معرفی شرکت ها


deep-river-0.2.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Online Deep Learning for river
ویژگی مقدار
سیستم عامل -
نام فایل deep-river-0.2.2
نام deep-river
نسخه کتابخانه 0.2.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Cedric Kulbach
ایمیل نویسنده cedric.kulbach@googlemail.com
آدرس صفحه اصلی https://online-ml.github.io/deep-river/
آدرس اینترنتی https://pypi.org/project/deep-river/
مجوز BSD-3
<p align="center"> <img height="150px" src="https://raw.githubusercontent.com/online-ml/deep-river/master/docs/img/logo.png" alt="incremental dl logo"> </p> <p align="center"> <img alt="PyPI" src="https://img.shields.io/pypi/v/deep-river"> <a href="https://codecov.io/gh/online-ml/deep-river" > <img src="https://codecov.io/gh/online-ml/deep-river/branch/master/graph/badge.svg?token=ZKUIISZAYA"/> </a> <img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/deep-river"> <img alt="GitHub" src="https://img.shields.io/github/license/online-ml/deep-river"> </p> <p align="center"> deep-river is a Python library for online deep learning. deep-river's ambition is to enable <a href="https://www.wikiwand.com/en/Online_machine_learning">online machine learning</a> for neural networks. It combines the <a href="https://www.riverml.xyz">river</a> API with the capabilities of designing neural networks based on <a href="https://pytorch.org">PyTorch</a>. </p> ## 📚 [Documentation](https://online-ml.github.io/deep-river/) The [documentation](https://online-ml.github.io/deep-river/) contains an overview of all features of this repository as well as the repository's full features list. In each of these, the git repo reference is listed in a section that shows examples of the features and functionality. ## 💈 Installation ```shell pip install deep-river ``` or ```shell pip install "river[deep]" ``` You can install the latest development version from GitHub as so: ```shell pip install https://github.com/online-ml/deep-river/archive/refs/heads/master.zip ``` ## 🍫 Quickstart We build the development of neural networks on top of the <a href="https://www.riverml.xyz">river API</a> and refer to the rivers design principles. The following example creates a simple MLP architecture based on PyTorch and incrementally predicts and trains on the website phishing dataset. For further examples check out the <a href="https://online-ml.github.io/deep-river">Documentation</a>. ### Classification ```python >>> from river import metrics, datasets, preprocessing, compose >>> from deep_river import classification >>> from torch import nn >>> from torch import optim >>> from torch import manual_seed >>> _ = manual_seed(42) >>> class MyModule(nn.Module): ... def __init__(self, n_features): ... super(MyModule, self).__init__() ... self.dense0 = nn.Linear(n_features, 5) ... self.nonlin = nn.ReLU() ... self.dense1 = nn.Linear(5, 2) ... self.softmax = nn.Softmax(dim=-1) ... ... def forward(self, X, **kwargs): ... X = self.nonlin(self.dense0(X)) ... X = self.nonlin(self.dense1(X)) ... X = self.softmax(X) ... return X >>> model_pipeline = compose.Pipeline( ... preprocessing.StandardScaler(), ... classification.Classifier(module=MyModule, loss_fn='binary_cross_entropy', optimizer_fn='adam') ... ) >>> dataset = datasets.Phishing() >>> metric = metrics.Accuracy() >>> for x, y in dataset: ... y_pred = model_pipeline.predict_one(x) # make a prediction ... metric = metric.update(y, y_pred) # update the metric ... model_pipeline = model_pipeline.learn_one(x, y) # make the model learn >>> print(f"Accuracy: {metric.get():.4f}") Accuracy: 0.6728 ``` ### Multi Target Regression ```python >>> from river import evaluate, compose >>> from river import metrics >>> from river import preprocessing >>> from river import stream >>> from sklearn import datasets >>> from torch import nn >>> from deep_river.regression.multioutput import MultiTargetRegressor >>> class MyModule(nn.Module): ... def __init__(self, n_features): ... super(MyModule, self).__init__() ... self.dense0 = nn.Linear(n_features, 3) ... ... def forward(self, X, **kwargs): ... X = self.dense0(X) ... return X >>> dataset = stream.iter_sklearn_dataset( ... dataset=datasets.load_linnerud(), ... shuffle=True, ... seed=42 ... ) >>> model = compose.Pipeline( ... preprocessing.StandardScaler(), ... MultiTargetRegressor( ... module=MyModule, ... loss_fn='mse', ... lr=0.3, ... optimizer_fn='sgd', ... )) >>> metric = metrics.multioutput.MicroAverage(metrics.MAE()) >>> ev = evaluate.progressive_val_score(dataset, model, metric) >>> print(f"MicroAverage(MAE): {metric.get():.2f}") MicroAverage(MAE): 28.36 ``` ### Anomaly Detection ```python >>> from deep_river.anomaly import Autoencoder >>> from river import metrics >>> from river.datasets import CreditCard >>> from torch import nn >>> import math >>> from river.compose import Pipeline >>> from river.preprocessing import MinMaxScaler >>> dataset = CreditCard().take(5000) >>> metric = metrics.ROCAUC(n_thresholds=50) >>> class MyAutoEncoder(nn.Module): ... def __init__(self, n_features, latent_dim=3): ... super(MyAutoEncoder, self).__init__() ... self.linear1 = nn.Linear(n_features, latent_dim) ... self.nonlin = nn.LeakyReLU() ... self.linear2 = nn.Linear(latent_dim, n_features) ... self.sigmoid = nn.Sigmoid() ... ... def forward(self, X, **kwargs): ... X = self.linear1(X) ... X = self.nonlin(X) ... X = self.linear2(X) ... return self.sigmoid(X) >>> ae = Autoencoder(module=MyAutoEncoder, lr=0.005) >>> scaler = MinMaxScaler() >>> model = Pipeline(scaler, ae) >>> for x, y in dataset: ... score = model.score_one(x) ... model = model.learn_one(x=x) ... metric = metric.update(y, score) ... >>> print(f"ROCAUC: {metric.get():.4f}") ROCAUC: 0.7447 ``` ## 🏫 Affiliations <p align="center"> <img src="https://upload.wikimedia.org/wikipedia/de/thumb/4/44/Fzi_logo.svg/1200px-Fzi_logo.svg.png?raw=true" alt="FZI Logo" height="200"/> </p>


نیازمندی

مقدار نام
~=1.0.2 scikit-learn
~=1.13.0 torch
~=1.3.2 pandas
~=1.24.0 numpy
~=0.15.0 river
~=4.61.2 tqdm
~=4.1.0 ordered-set
~=0.0.2 torchviz
- dataclasses
>=0.10.1 graphviz
>=3.0.2 matplotlib
>=0.990 mypy
>=2.20.0 pre-commit
>=7.2.0 pytest
>=4.0.0 pytest-cov
>=0.22.1 scikit-learn
>=22.10.0 black
>=5.0.4 flake8
>=5.10.1 isort
>=1.0.0 jupyter
==3.2.0 pyupgrade
>=2.0.2 flask
>=6.9.0 ipykernel
>=0.5.3 mike
>=1.2.3 mkdocs
>=2.7.0 mkdocs-awesome-pages-plugin
>=0.3.5 mkdocs-gen-files
>=0.0.8 mkdocs-charts-plugin
>=0.4.1 mkdocs-literate-nav
>=8.1.11 mkdocs-material
>=0.19.0 mkdocstrings[python]
>=0.5.0 pytkdocs[numpy-style]
>=0.1.0 ipython-genutils
>=0.20.0 mkdocs-jupyter
>=6.4.2 nbconvert
>=1.2 numpydoc
>=3.2.2 spacy
>=3.0.3 jinja2
- dominate
- jupyter-client
- mkdocs-charts-plugin
- python-slugify
==2.3.1 watermark
~=1.0.2 scikit-learn
~=1.13.0 torch
~=1.3.2 pandas
~=1.24.0 numpy
~=0.15.0 river
~=4.61.2 tqdm
~=4.1.0 ordered-set
~=0.0.2 torchviz
>=0.10.1 graphviz
>=3.0.2 matplotlib
>=0.990 mypy
>=2.20.0 pre-commit
>=7.2.0 pytest
>=4.0.0 pytest-cov
>=0.22.1 scikit-learn
>=22.10.0 black
>=5.0.4 flake8
>=5.10.1 isort
>=1.0.0 jupyter
==3.2.0 pyupgrade
~=1.0.2 scikit-learn
~=1.13.0 torch
~=1.3.2 pandas
~=1.24.0 numpy
~=0.15.0 river
~=4.61.2 tqdm
~=4.1.0 ordered-set
~=0.0.2 torchviz
>=2.0.2 flask
>=6.9.0 ipykernel
>=0.5.3 mike
>=1.2.3 mkdocs
>=2.7.0 mkdocs-awesome-pages-plugin
>=0.3.5 mkdocs-gen-files
>=0.0.8 mkdocs-charts-plugin
>=0.4.1 mkdocs-literate-nav
>=8.1.11 mkdocs-material
>=0.19.0 mkdocstrings[python]
>=0.5.0 pytkdocs[numpy-style]
>=0.1.0 ipython-genutils
>=0.20.0 mkdocs-jupyter
>=6.4.2 nbconvert
>=1.2 numpydoc
>=3.2.2 spacy
>=3.0.3 jinja2
- dominate
- jupyter-client
- mkdocs-charts-plugin
- python-slugify
==2.3.1 watermark


زبان مورد نیاز

مقدار نام
>=3.6.0 Python


نحوه نصب


نصب پکیج whl deep-river-0.2.2:

    pip install deep-river-0.2.2.whl


نصب پکیج tar.gz deep-river-0.2.2:

    pip install deep-river-0.2.2.tar.gz