معرفی شرکت ها


deep-medical-toolkit-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Tools to facilitate deep learning research with a focus on medical imaging.
ویژگی مقدار
سیستم عامل -
نام فایل deep-medical-toolkit-0.0.4
نام deep-medical-toolkit
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Charley Zhang
ایمیل نویسنده yzhang46@nd.edu
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/deep-medical-toolkit/
مجوز Apache License 2.0
# Deep Medical Toolkit (dmt) This repo consists of a personal code toolkit for the purpose of facilitating medical imaging research. The main components of this library consists of a neural network model zoo, image transformations (for preprocessing & augmentation), common metrics/losses, fast multiprocessed data loading, and data structures for image samples. ## Implementation Details ### Similarities to [Torchio](https://github.com/fepegar/torchio) - Same design hierarchy where samples (dict subclass) can hold arbitrary attributes, and library-specific data like Images (e.g. ScalarImage3D), Labels (e.g Masks) - Transforms take samples (i.e. subjects) as they contain all the abstractions and data format conversions built-in. Also their custom attributes feature allows for easy storage of transformation history. ### Improvements Over [Torchio](https://github.com/fepegar/torchio) - Overall objects and shift in design.. - Introduced data abstractions like samples (i.e. subject in torchio) and examples (elements in a batch). This distinction is important. - More extensible to allow custom behavior for data structures. - Added general data structures for 2D & 3D images, and labels. - 3D: ScalarMask3D, ScalarImage3D - 2D: ScalarMask2D, ScalarImage2D, VectorImage2D - Classification: CategoricalLabel - Extended transformations to both 2D & 3D. Also added some 3D ones as well. - Added 3D transforms: - All 2D transforms: - Improved existing data structures. - For labels, added categorical (both multi-class & multi-label). - For Images, gives you the option to permanently load data. - Extensibility is improved for almost all data structures. For example, in an Image, you can overload how a file is read, what preprocessing you want, how to get an array/tensor from the preprocessed sitk image. - Extended multiprocessing data loading for better flexibility, extensibility, and performance. - Torchio has a Queue class that loades patches, DMT's equivalent of this is the PatchLoader class. - This class continously loads patches rather than waiting for the queue to empty. - DMT also has a DaemonLoader class that wraps the PyTorch DataLoader to continuously load samples. - Added a model zoo that has both 2D & 3D neural networks. - Added losses & metrics common to 2D & 3D computer vision tasks. Additional Verbose Improvements - Universally, numpy.ndarrays are passed around (instad of tensors like torchio) - Sample images (one sample = one patient) are lazy-loaded as an sitk object if a path is given. ### TODO: General - [x] Add weak references for Samples, Images, and Labels for easy access. - [ ] Remove printing private attributes in __repr__ for images & others. - [ ] For samples, and other relevant dict objects, check if reserved_attributes are not being overwritten. Data - [ ] Add mask + image overlap plotting for samples - [ ] Add Transforms - [ ] Add image shape tracking to attributes for transforms (sample transform history). - [ ] Add both 2D & 3D resized crop where you can set the scale.


نیازمندی

مقدار نام
!=2.0.* SimpleITK
- nibabel
>=1.15 numpy
- scipy
- scikit-image
- Pillow
>=1.1 torch
- torchvision
- torch-summary
- pandas
- psutil
- matplotlib
- wandb
- tqdm


نحوه نصب


نصب پکیج whl deep-medical-toolkit-0.0.4:

    pip install deep-medical-toolkit-0.0.4.whl


نصب پکیج tar.gz deep-medical-toolkit-0.0.4:

    pip install deep-medical-toolkit-0.0.4.tar.gz