معرفی شرکت ها


deep-logic-4.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Deep logic: Interpretable neural networks in Python.
ویژگی مقدار
سیستم عامل -
نام فایل deep-logic-4.0.4
نام deep-logic
نسخه کتابخانه 4.0.4
نگهدارنده ['P. Barbiero']
ایمیل نگهدارنده ['barbiero@tutanota.com']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/pietrobarbiero/deep-logic
آدرس اینترنتی https://pypi.org/project/deep-logic/
مجوز Apache 2.0
Welcome to Deep Logic ----------------------- |Build| |Coverage| |Docs| |Dependendencies| |PyPI license| |PyPI-version| .. |Build| image:: https://img.shields.io/travis/pietrobarbiero/deep-logic?label=Master%20Build&style=for-the-badge :alt: Travis (.org) :target: https://travis-ci.org/pietrobarbiero/deep-logic .. |Coverage| image:: https://img.shields.io/codecov/c/gh/pietrobarbiero/deep-logic?label=Test%20Coverage&style=for-the-badge :alt: Codecov :target: https://codecov.io/gh/pietrobarbiero/deep-logic .. |Docs| image:: https://img.shields.io/readthedocs/deep-logic/latest?style=for-the-badge :alt: Read the Docs (version) :target: https://deep-logic.readthedocs.io/en/latest/ .. |Dependendencies| image:: https://img.shields.io/requires/github/pietrobarbiero/deep-logic?style=for-the-badge :alt: Requires.io :target: https://requires.io/github/pietrobarbiero/deep-logic/requirements/?branch=master .. |Repo size| image:: https://img.shields.io/github/repo-size/pietrobarbiero/deep-logic?style=for-the-badge :alt: GitHub repo size :target: https://github.com/pietrobarbiero/deep-logic .. |PyPI download total| image:: https://img.shields.io/pypi/dm/deep-logic?label=downloads&style=for-the-badge :alt: PyPI - Downloads :target: https://pypi.python.org/pypi/deep-logic/ .. |Open issues| image:: https://img.shields.io/github/issues/pietrobarbiero/deep-logic?style=for-the-badge :alt: GitHub issues :target: https://github.com/pietrobarbiero/deep-logic .. |PyPI license| image:: https://img.shields.io/pypi/l/deep-logic.svg?style=for-the-badge :target: https://pypi.python.org/pypi/deep-logic/ .. |Followers| image:: https://img.shields.io/github/followers/pietrobarbiero?style=social :alt: GitHub followers :target: https://github.com/pietrobarbiero/deep-logic .. |Stars| image:: https://img.shields.io/github/stars/pietrobarbiero/deep-logic?style=social :alt: GitHub stars :target: https://github.com/pietrobarbiero/deep-logic .. |PyPI-version| image:: https://img.shields.io/pypi/v/deep-logic?style=for-the-badge :alt: PyPI :target: https://pypi.python.org/pypi/deep-logic/ .. |Contributors| image:: https://img.shields.io/github/contributors/pietrobarbiero/deep-logic?style=for-the-badge :alt: GitHub contributors :target: https://github.com/pietrobarbiero/deep-logic .. |Language| image:: https://img.shields.io/github/languages/top/pietrobarbiero/deep-logic?style=for-the-badge :alt: GitHub top language :target: https://github.com/pietrobarbiero/deep-logic .. |Maintenance| image:: https://img.shields.io/maintenance/yes/2019?style=for-the-badge :alt: Maintenance :target: https://github.com/pietrobarbiero/deep-logic Deep Logic is a python package providing a set of utilities to build deep learning models that are explainable by design. This library provides APIs to get first-order logic explanations from neural networks. Quick start ----------- You can install Deep Logic along with all its dependencies from `PyPI <https://pypi.org/project/deep-logic/>`__: .. code:: bash pip install -r requirements.txt deep-logic Example ----------- First of all we need to import some useful libraries: .. code:: python import torch import numpy as np import deep_logic as dl In most cases it is recommended to fix the random seed for reproducibility: .. code:: python set_seed(0) For this simple experiment, let's set up a simple toy problem as the XOR problem (plus 2 dummy features): .. code:: python x_train = torch.tensor([ [0, 0, 0, 1], [0, 1, 0, 1], [1, 0, 0, 1], [1, 1, 0, 1], ], dtype=torch.float) y_train = torch.tensor([0, 1, 1, 0], dtype=torch.float).unsqueeze(1) xnp = x_train.detach().numpy() ynp = y_train.detach().numpy().ravel() We can instantiate a simple feed-forward neural network with 3 layers: .. code:: python layers = [ torch.nn.Linear(x_train.size(1), 10), torch.nn.LeakyReLU(), torch.nn.Linear(10, 4), torch.nn.LeakyReLU(), torch.nn.Linear(4, 1), torch.nn.Sigmoid(), ] model = torch.nn.Sequential(*layers) Before training the network, we should validate the input data. The only requirement is the following for all the input features to be in ``[0,1]``. .. code:: python dl.validate_data(x_train) We can now train the network: .. code:: python optimizer = torch.optim.Adam(model.parameters(), lr=0.01) model.train() need_pruning = True for epoch in range(1000): # forward pass optimizer.zero_grad() y_pred = model(x_train) # Compute Loss loss = torch.nn.functional.binary_crossentropy_loss(y_pred, y_train) # A bit of L1 regularization will encourage sparsity for module in model.children(): if isinstance(module, torch.nn.Linear): loss += 0.001 * torch.norm(module.weight, 1) # We can use sparsity to prune dummy features if epoch > 500 and need_pruning: dl.utils.relu_nn.prune_features(model, n_classes) need_pruning = False # backward pass loss.backward() optimizer.step() # compute accuracy if epoch % 100 == 0: y_pred_d = (y_pred > 0.5) accuracy = (y_pred_d.eq(y_train).sum(dim=1) == y_train.size(1)).sum().item() / y_train.size(0) print(f'Epoch {epoch}: train accuracy: {accuracy:.4f}') Once trained we can extract first-order logic formulas describing local explanations of the prediction for a specific input by looking at the reduced model: .. code:: python explanation = dl.logic.explain_local(model, x_train, y_train, x_sample=x[1], method='pruning', target_class=1, concept_names=['f1', 'f2', 'f3', 'f4']) print(explanation) The local explanation will be a given in terms of conjunctions of input features which are locally relevant (the dummy features will be discarded thanks to pruning). For this specific input, the explanation would be ``~f1 AND f2``. Finally the ``fol`` package can be used to generate global explanations of the predictions for a specific class: .. code:: python global_explanation, _, _ = dl.logic.relu_nn.combine_local_explanations(model, x_train, y_train.squeeze(), target_class=1, method='pruning') accuracy, _ = dl.logic.base.test_explanation(global_explanation, target_class=1, x_train, y_train) explanation = dl.logic.base.replace_names(global_explanation, concept_names=['f1', 'f2', 'f3', 'f4']) print(f'Accuracy when using the formula {explanation}: {accuracy:.4f}') The global explanation is given in a disjunctive normal form for a specified class. For this problem the generated explanation for class ``y=1`` is ``(f1 AND ~f2) OR (f2 AND ~f1)`` which corresponds to ``f1 XOR f2`` (i.e. the `exclusive OR` function). Theory -------- Theoretical foundations can be found in the following papers. Learning of constraints:: @inproceedings{ciravegna2020constraint, title={A Constraint-Based Approach to Learning and Explanation.}, author={Ciravegna, Gabriele and Giannini, Francesco and Melacci, Stefano and Maggini, Marco and Gori, Marco}, booktitle={AAAI}, pages={3658--3665}, year={2020} } Learning with constraints:: @inproceedings{marra2019lyrics, title={LYRICS: A General Interface Layer to Integrate Logic Inference and Deep Learning}, author={Marra, Giuseppe and Giannini, Francesco and Diligenti, Michelangelo and Gori, Marco}, booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in Databases}, pages={283--298}, year={2019}, organization={Springer} } Constraints theory in machine learning:: @book{gori2017machine, title={Machine Learning: A constraint-based approach}, author={Gori, Marco}, year={2017}, publisher={Morgan Kaufmann} } Authors ------- * `Pietro Barbiero <http://www.pietrobarbiero.eu/>`__, University ofCambridge, UK. * Francesco Giannini, University of Florence, IT. * Gabriele Ciravegna, University of Florence, IT. * Dobrik Georgiev, University of Cambridge, UK. Licence ------- Copyright 2020 Pietro Barbiero, Francesco Giannini, Gabriele Ciravegna, and Dobrik Georgiev. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.


نحوه نصب


نصب پکیج whl deep-logic-4.0.4:

    pip install deep-logic-4.0.4.whl


نصب پکیج tar.gz deep-logic-4.0.4:

    pip install deep-logic-4.0.4.tar.gz