معرفی شرکت ها


deep-forest-0.1.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Deep Forest
ویژگی مقدار
سیستم عامل -
نام فایل deep-forest-0.1.7
نام deep-forest
نسخه کتابخانه 0.1.7
نگهدارنده ['Yi-Xuan Xu']
ایمیل نگهدارنده ['xuyx@lamda.nju.edu.cn']
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/LAMDA-NJU/Deep-Forest
آدرس اینترنتی https://pypi.org/project/deep-forest/
مجوز -
Deep Forest (DF) 21 =================== |github|_ |readthedocs|_ |codecov|_ |python|_ |pypi|_ |style|_ .. |github| image:: https://github.com/LAMDA-NJU/Deep-Forest/workflows/DeepForest-CI/badge.svg .. _github: https://github.com/LAMDA-NJU/Deep-Forest/actions .. |readthedocs| image:: https://readthedocs.org/projects/deep-forest/badge/?version=latest .. _readthedocs: https://deep-forest.readthedocs.io .. |codecov| image:: https://codecov.io/gh/LAMDA-NJU/Deep-Forest/branch/master/graph/badge.svg?token=5BVXOT8RPO .. _codecov: https://codecov.io/gh/LAMDA-NJU/Deep-Forest .. |python| image:: https://img.shields.io/pypi/pyversions/deep-forest .. _python: https://pypi.org/project/deep-forest/ .. |pypi| image:: https://img.shields.io/pypi/v/deep-forest?color=blue .. _pypi: https://pypi.org/project/deep-forest/ .. |style| image:: https://img.shields.io/badge/code%20style-black-000000.svg .. _style: https://github.com/psf/black **DF21** is an implementation of `Deep Forest <https://arxiv.org/pdf/1702.08835.pdf>`__ 2021.2.1. It is designed to have the following advantages: - **Powerful**: Better accuracy than existing tree-based ensemble methods. - **Easy to Use**: Less efforts on tunning parameters. - **Efficient**: Fast training speed and high efficiency. - **Scalable**: Capable of handling large-scale data. DF21 offers an effective & powerful option to the tree-based machine learning algorithms such as Random Forest or GBDT. For a quick start, please refer to `How to Get Started <https://deep-forest.readthedocs.io/en/latest/how_to_get_started.html>`__. For a detailed guidance on parameter tunning, please refer to `Parameters Tunning <https://deep-forest.readthedocs.io/en/latest/parameters_tunning.html>`__. DF21 is optimized for what a tree-based ensemble excels at (i.e., tabular data), if you want to use the multi-grained scanning part to better handle structured data like images, please refer to the `origin implementation <https://github.com/kingfengji/gcForest>`__ for details. Installation ------------ DF21 can be installed using pip via `PyPI <https://pypi.org/project/deep-forest/>`__ which is the package installer for Python. You can use pip to install packages from the Python Package Index and other indexes. Refer `this <https://pypi.org/project/pip/>`__ for the documentation of pip. Use this command to download DF21 : .. code-block:: bash pip install deep-forest Quickstart ---------- Classification ************** .. code-block:: python from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from deepforest import CascadeForestClassifier X, y = load_digits(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) model = CascadeForestClassifier(random_state=1) model.fit(X_train, y_train) y_pred = model.predict(X_test) acc = accuracy_score(y_test, y_pred) * 100 print("\nTesting Accuracy: {:.3f} %".format(acc)) >>> Testing Accuracy: 98.667 % Regression ********** .. code-block:: python from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from deepforest import CascadeForestRegressor X, y = load_boston(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) model = CascadeForestRegressor(random_state=1) model.fit(X_train, y_train) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("\nTesting MSE: {:.3f}".format(mse)) >>> Testing MSE: 8.068 Resources --------- * `Documentation <https://deep-forest.readthedocs.io/>`__ * Deep Forest: `[Conference] <https://www.ijcai.org/proceedings/2017/0497.pdf>`__ | `[Journal] <https://academic.oup.com/nsr/article-pdf/6/1/74/30336169/nwy108.pdf>`__ * Keynote at AISTATS 2019: `[Slides] <https://aistats.org/aistats2019/0-AISTATS2019-slides-zhi-hua_zhou.pdf>`__ Reference --------- .. code-block:: latex @article{zhou2019deep, title={Deep forest}, author={Zhi-Hua Zhou and Ji Feng}, journal={National Science Review}, volume={6}, number={1}, pages={74--86}, year={2019}} @inproceedings{zhou2017deep, title = {{Deep Forest:} Towards an alternative to deep neural networks}, author = {Zhi-Hua Zhou and Ji Feng}, booktitle = {IJCAI}, pages = {3553--3559}, year = {2017}} Thanks to all our contributors ------------------------------ |contributors| .. |contributors| image:: https://contributors-img.web.app/image?repo=LAMDA-NJU/Deep-Forest .. _contributors: https://github.com/LAMDA-NJU/Deep-Forest/graphs/contributors


نیازمندی

مقدار نام
>=1.14.6 numpy
>=1.1.0 scipy
>=0.11 joblib
>=1.0 scikit-learn


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl deep-forest-0.1.7:

    pip install deep-forest-0.1.7.whl


نصب پکیج tar.gz deep-forest-0.1.7:

    pip install deep-forest-0.1.7.tar.gz