معرفی شرکت ها


deep-data-package-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Hyperion and AVIRIS: file reader, multiple band indici calculator, and interactive mapper
ویژگی مقدار
سیستم عامل -
نام فایل deep-data-package-1.0.0
نام deep-data-package
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Team Deep-Data
ایمیل نویسنده seansmith@mines.edu
آدرس صفحه اصلی https://github.com/seansmith-mines/Deep-Data/archive/v1.0.0.tar.gz
آدرس اینترنتی https://pypi.org/project/deep-data-package/
مجوز -
################################################################################ # # Copyright (C) 2019 Team Deep-Data, Colorado School of Mines # # Date created: 1/22/19 # Date last updated: # # Creators: # - Sean Smith seansmith@mines.edu # - Tyler Murphy tmurphy@mines.edu # - Tyler Blount trblount@mines.edu # - Sydney Nelson snelson1@mines.edu # - Josh Grego jgrego@mines.edu # - Jake Steiner msteiner@mines.edu # - Marcelo Gonzales magonzal@mines.edu # - Daniel Hanuszczak danielhanuszczak@mines.edu # ################################################################################ Included below are file descriptions for all files in deep_data_package module along will descriptions of functionality. ################################################################################ ### file_reader.py ### ################################################################################ Module for reading AVIRIS flight data and mapping # OVERVIEW ===================================================================== Classes ==================================================================== hyperion_band_reader aviris_band_reader pickled_aviris_band_reader Functions ================================================================== select_closest_band create_pickled_aviris_flight get_available_aviris_flights get_available_pickled_aviris_flights get_available_hyperion_passes # CLASS hyperion_band_reader =================================================== Class for reading Hyperion data from GEOtiff L1 files NOTE: bands 1-70 and VNIR, bands 71-242 are SWIR Reference ================================================================== https://archive.usgs.gov/archive/sites/eo1.usgs.gov/EO1userguidev2pt320030715UC.pdf https://crisp.nus.edu.sg/~research/tutorial/eo1.htm https://crisp.nus.edu.sg/~research/tutorial/eo1.htm Inputs ===================================================================== Optional: hyperion_pass - name of Hyperion pass to load (Default EO1H0410362008289110KF) scale_factor - number to divide bands by (Defaul 80 to get radiance values) Returns ==================================================================== class to load radiance bands as np arrays class Attributes =========================================================== band_reader.hyperion_pass - Hyperion flight loaded band_reader.scale_factor - number to divide bands by (Defaul 80 to get radiance values) band_reader.mode - self identified mode for reference ('hyperion') band_reader.approx_band_centers - string refence to what band centers correspond to what files in Hyperion GEOtif files self.swir_actual_band_centers - caluclated band centers for SWIR bands (for reference) METHODS ==================================================================== load_band ============================================================== By defualt loads Hyperion pass EO1H0410362008289110KF over sunshine canyon landfill Reference ========================================================== N/A Inputs ============================================================= band_req - band wavelength to load adjust_for_gain - N/A Returns ============================================================ 2D np array of radiance data for band wavelength called - To load a row band_array[row_number, :] - To load a column band_array[:, col_number] - To load a pixel band_array[row_number, col_number] load_pixel ============================================================= Function for reading all bands of an individual pixel from AVIRIS flight data Reference ========================================================== N/A Inputs ============================================================= row - int of row number of requested pixel col - int of column number of requested pixel adjust_for_gain - N/A Returns ========================================================== Ordered dict of wavelengths vs irradiance for requested pixel # CLASS aviris_band_reader ===================================================== Class for reading AVIRIS flight data from uncompressed AVIRIS flight folder. No files need to be modified after downloading from AVIRIS data portal. Just uncompress in the aviris_flight_folder and go. By defualt loads AVIRIS flight f111115t01p00r08 over sunshine canyon landfill Reference ============================================================== N/A Inputs ================================================================= Optional: aviris_flight_number - AVIRIS flight number to load aviris_filename - filename to load in AVIRIS flight number folder samples - from hdr file in AVERIS flight folder (Defualt 780) lines - from hdr file in AVERIS flight folder (Defualt 8355) bands - from hdr file in AVERIS flight folder (Defualt 224) aviris_calibration_filename - name of AVIRIS file for reflectance calibration aviris_gain_filename - name of AVIRIS gain file for reflectance calibration Returns ================================================================ class to load radiance bands as np arrays class Attributes ======================================================= band_reader.aviris_flight - AVIRIS flight loaded band_reader.n_cols - number of columns in AVIRIS band file (equals input samples) band_reader.n_rows - number of rows in AVIRIS band file (equals input lines) band_reader.n_bands - number of bands in AVIRIS band file (equals input bands) band_reader.scale_factor - multiplier of bands (equals input scale_factor) band_reader.aviris_flight_folder_filepath - full filepath for AVIRIS flight folder band_reader.bands_filepath - full filepath for AVIRIS band file band_reader.info - dict with useful info from AVIRIS flight Contains: # General info ['info']['n_rows'] = number of rows in .npy files ['info']['n_cols'] = number of columns in .npy files ['info']['n_bands'] = number of bands from AVIRIS flight ['info']['AVIRIS_flight'] = aviris_flight # Band info ['band_calibration']['band_quantity'] = 'Wavelength' ['band_calibration']['band_unit'] = 'nm' ['band_calibration']['centers'] = mathmatical center of wavelength ['band_calibration']['bandwidths'] = bandwidths of wavelengths ['band_calibration']['bands'] = wavelengths callable # Gain values ['gain_values'] = np array of gain values for each band Call any of above w/ band_reader.info['INSERT_AS_SHOWN_ABOVE'] METHODS ==================================================================== parse_aviris_flight ==================================================== Function for loading AVIRIS flight files of the first time By defualt loads AVIRIS flight f111115t01p00r08 over sunshine canyon landfill Inputs ============================================================= info_file_name - name for info file to be written by parser aviris_calibration_filename - name of AVIRIS file for reflectance calibration aviris_gain_filename - name of AVIRIS gain file for reflectance calibration Returns ============================================================ flight_dict - dict with useful info from AVIRIS flight Contains: # General info ['info']['n_rows'] = number of rows in .npy files ['info']['n_cols'] = number of columns in .npy files ['info']['n_bands'] = number of bands from AVIRIS flight ['info']['AVIRIS_flight'] = aviris_flight # Band info ['band_calibration']['band_quantity'] = 'Wavelength' ['band_calibration']['band_unit'] = 'nm' ['band_calibration']['centers'] = mathmatical center of wavelength ['band_calibration']['bandwidths'] = bandwidths of wavelengths ['band_calibration']['bands'] = wavelengths callable # Gain values ['gain_values'] = np array of gain values for each band get_memmap ============================================================= Function for loading memmap of AVIRIS band file Inputs ============================================================= N/A Returns ============================================================ np.memmap of AVIRIS band file load_band ============================================================== Function for reading AVIRIS flight data from .npy files pickled by create_pickled_aviris_flight() By defualt loads AVIRIS flight f111115t01p00r08 over sunshine canyon landfill Reference ========================================================== N/A Inputs ============================================================= band_req - band wavelength to load adjust_for_gain - If want to divide band array by gain value in .gain file (Default: False) Returns ============================================================ 2D np array of radiance data for band wavelength called - To load a row band_array[row_number, :] - To load a column band_array[:, col_number] - To load a pixel band_array[row_number, col_number] load_pixel ============================================================= Function for reading all bands of an individual pixel from AVIRIS flight data Reference ========================================================== N/A Inputs ============================================================= row - int of row number of requested pixel col - int of column number of requested pixel adjust_for_gain - N/A Returns ============================================================ Ordered dict of wavelengths vs irradience for requested pixel # CLASS pickled_aviris_band_reader ============================================= Class for reading AVIRIS flight data from .npy files pickled by create_pickled_aviris_flight() By defualt loads AVIRIS flight f111115t01p00r08 over sunshine canyon landfill Reference ============================================================== N/A Inputs ================================================================= Optional: aviris_flight - AVIRIS flight to load Returns ================================================================ class to load radiance bands as np arrays class Attributes ======================================================= band_reader.aviris_flight - AVIRIS flight loaded band_reader.np_path - path will load .npy files from band_reader.info - dict with useful info from AVIRIS flight Contains: # General info ['info']['n_rows'] = number of rows in .npy files ['info']['n_cols'] = number of columns in .npy files ['info']['n_bands'] = number of bands from AVIRIS flight ['info']['AVIRIS_flight'] = aviris_flight # Band info ['band_calibration']['band_quantity'] = 'Wavelength' ['band_calibration']['band_unit'] = 'nm' ['band_calibration']['centers'] = mathmatical center of wavelength ['band_calibration']['bandwidths'] = bandwidths of wavelengths ['band_calibration']['bands'] = wavelengths callable # Gain values ['gain_values'] = np array of gain values for each band Call any of above w/ band_reader.info['INSERT_AS_SHOWN_ABOVE'] METHODS ==================================================================== load_band ============================================================== Function for reading AVIRIS flight data from .npy files pickled by create_pickled_aviris_flight() Reference ========================================================== N/A Inputs ============================================================= band_req - band wavelength to load Returns ============================================================ 2D np array of radiance data for band wavelength called - To load a row band_array[row_number, :] - To load a column band_array[:, col_number] - To load a pixel band_array[row_number, col_number] load_pixel ============================================================= Function for reading all bands of an individual pixel from AVIRIS flight data from .npy files pickled by create_pickled_aviris_flight() Reference ========================================================== N/A Inputs ============================================================= row - int of row number of requested pixel col - int of column number of requested pixel adjust_for_gain - N/A Returns ============================================================ Ordered dict of wavelengths vs irradience for requested pixel # FUNCTION select_closest_band ================================================= Returns closest band available to band_req. Inputs ============================================================= band_req - band wavelength to match band_req - list of band wavelengths available Returns ============================================================ band available, if two numbers are equally close, returns the smallest number. # FUNCTION create_pickled_aviris_flight ======================================== Function for creating pickled AVIRIS flight data using spectral python library By defualt loads AVIRIS flight f111115t01p00r08 over sunshine canyon landfill Reference ============================================================== N/A Inputs ================================================================= Optional: aviris_flight - AVIRIS flight number aviris_flight_folder - AVIRIS flight folder to load aviris_bands_filename - filename to load in AVIRIS flight number folder samples - from hdr file in AVERIS flight folder (Defualt 780) lines - from hdr file in AVERIS flight folder (Defualt 8355) bands - from hdr file in AVERIS flight folder (Defualt 224) aviris_calibration_filename - name of AVIRIS file for reflectance calibration aviris_gain_filename - name of AVIRIS gain file for reflectance calibration adjust_for_gain - if should devide bands by associated gain value to true values (Default False) scale_factor - if want to dived all values by some value (Default 10000.0) Returns ================================================================ N/A # FUNCTION get_available_aviris_flights ======================================== Function listing all AVIRIS flights available Inputs ================================================================= N/A Returns ================================================================ List of AVIRIS flights available # FUNCTION get_available_pickled_aviris_flights ================================ Function listing all pickled AVIRIS flights available Inputs ================================================================= N/A Returns ================================================================ List of pickled AVIRIS flights available # FUNCTION get_available_hyperion_passes ======================================= Function listing all Hyperion passes available Inputs ================================================================= N/A Returns ================================================================ List of Hyperion passes available ################################################################################ ################################################################################ ### mapper.py ### ################################################################################ Module for mapping band ratio output arrays # OVERVIEW ===================================================================== Functions ================================================================== create_heatmap_interactive # FUNCTION create_heatmap_interactive ========================================== Function for creating an interactive heatmap Reference ============================================================== N/A Inputs ================================================================= band_reader - band_reader class instance bandratio_array - bandratio result array for heatmap bandratio_array_name - name of bandratio calculated flight_name - name of the flight alpha - transparency value of overlay (Defualt 0.6) gamma_1 - threshold value for map (Default mean of normalized bandratio_array) interval - step value of threshold slider (Default 0.00001) std_multiplier - multiplier of std for range of values of threshold slider (Default 3) clipped - if want clipped heatmap instead of default treshhold (Default False) display - show plt (Default True) save - save plt when (Default False) cmap - color scheme for heatmap (Default 'hot' for threshold, 'jet' for clipped) quiet - if should not log info about bandratio_array (Defualt False) rgb_scale_value - float value to increase brightness of rgb image Returns ================================================================ N/A ################################################################################ ################################################################################ ### band_ratios.py ### ################################################################################ Module for calculating band ratios # OVERVIEW ===================================================================== Functions ================================================================== Deep_Data HI_1453 HI_1215 HI_1732 GM NDVI NDPI # FUNCTION Deep_Data =========================================================== Deep-Data Hydrocarbon Index ================================================ Convert numpy arrays of radiance data to a Deep-Data hydrocarbon index map Inputs ===================================================================== L_1197 : At-sensor radiance at 1197 nm wavelength (numpy array) L_1216 : At-sensor radiance at 1216 nm wavelength (numpy array) L_1235 : At-sensor radiance at 1235 nm wavelength (numpy array) L_1373 : At-sensor radiance at 1373 nm wavelength (numpy array) L_1453 : At-sensor radiance at 1453 nm wavelength (numpy array) L_1503 : At-sensor radiance at 1503 nm wavelength (numpy array) Returns ==================================================================== Deep-Data Hydrocarbon Index Map # FUNCTION HI_1453 ============================================================= 1453 Hydrocarbon Index ===================================================== Convert numpy arrays of radiance data to a 1453 hydrocarbon index map Inputs ===================================================================== L_1373 : At-sensor radiance at 1373 nm wavelength (numpy array) L_1453 : At-sensor radiance at 1453 nm wavelength (numpy array) L_1503 : At-sensor radiance at 1503 nm wavelength (numpy array) Returns ==================================================================== 1453 Hydrocarbon Index Map # FUNCTION HI_1215 ============================================================= 1215 Hydrocarbon Index ===================================================== Convert numpy arrays of radiance data to a 1215 hydrocarbon index map Inputs ===================================================================== L_1197 : At-sensor radiance at 1197 nm wavelength (numpy array) L_1216 : At-sensor radiance at 1216 nm wavelength (numpy array) L_1235 : At-sensor radiance at 1235 nm wavelength (numpy array) Returns ==================================================================== 1215 Hydrocarbon Index Map # FUNCTION HI_1732 ============================================================= 1732 Hydrocarbon Index ================================================= Convert numpy arrays of radiance data to a 1732 hydrocarbon index map Inputs ===================================================================== L_1705 : At-sensor radiance at 1705 nm wavelength (numpy array) L_1729 : At-sensor radiance at 1729 nm wavelength (numpy array) L_1741 : At-sensor radiance at 1741 nm wavelength (numpy array) Returns ==================================================================== 1732 Hydrocarbon Index Map # FUNCTION GM ================================================================== Goddijn-Murphy Index ======================================================= From: "Proof of concept for a model of light reflectance of plastics floating on natural waters" by Lonneke Goddijn-Murphy and Juvenal Dufaur. - See Table 5 Convert numpy arrays of radiance data to a Goddijn-Murphy map Inputs ===================================================================== L_850 : At-sensor radiance at 850 nm wavelength (numpy array) L_1660 : At-sensor radiance at 1660 nm wavelength (numpy array) Returns ==================================================================== Goddijn-Murphy Map # FUNCTION NDVI ================================================================ NDVI ======================================================================= Convert numpy arrays of radiance data to a NDVI map Inputs ===================================================================== L_1006 : At-sensor radiance at 1006 nm wavelength (numpy array) L_675 : At-sensor radiance at 675 nm wavelength (numpy array) Returns ==================================================================== NDVI Map # FUNCTION NDPI ================================================================ NDPI ======================================================================= Convert numpy arrays of radiance data to a NDPI map Inputs ===================================================================== L_1263 : At-sensor radiance at 1263 nm wavelength (numpy array) L_2417 : At-sensor radiance at 2417 nm wavelength (numpy array) Returns ==================================================================== NDPI Map ################################################################################


نحوه نصب


نصب پکیج whl deep-data-package-1.0.0:

    pip install deep-data-package-1.0.0.whl


نصب پکیج tar.gz deep-data-package-1.0.0:

    pip install deep-data-package-1.0.0.tar.gz