# Decoripy
decoripy provides a well-structured template class for creating Python decorators. It uses inheritance to be efficient
and simple.

[](https://badge.fury.io/py/decoripy)
[](https://travis-ci.org/gioelecrispo/decoripy)
[](https://codecov.io/gh/gioelecrispo/decoripy)
## Table of contents
1. Motivation
2. Usage
## 1. Motivation
With decoripy, writing a decorator becomes very easy. It aims to improve the Python language expressiveness by
enhancing a very powerful Python mechanism.
Decoripy provides a template built upon the basic wrapping of a function, hiding the implementation details, and
providing some useful advantages:
- no distinction between decorator with or without arguments has to be done;
- a temporal based execution is provided.
### Decorator arguments
With decoripy you could create decorator with or without arguments with no pain.
In standard Python you should handle the arguments passed to the decorator, because, in this case, the wrapper
function does not take the function as a the first argument.
So you could do something like this:
```python
@MyDecorator
def function_to_decorate(var):
pass
```
or
```python
@MyDecorator(True)
def function_to_decorate(var):
pass
```
or
```python
@MyDecorator(timeout=3000, num_retries=3)
def function_to_decorate(var):
pass
```
or
```python
@MyDecorator(True, timeout=3000, num_retries=3)
def function_to_decorate(var):
pass
```
and you have not to change your code.
The unnamed arguments (```*args```) passed to the decorator can be accessed by using the positional order (For example,
the first parameters could be taken in this way: ```first_arg = args[0]```, see Usage).
The named arguments (```**kwargs```) passed to the decorator are parsed and can be accessed by their name (For example,
timeout could be used in the implementation code in this way: ```self.timeout```, see Usage).
### Temporal based execution
The decoripy template is built to provide temporal based execution:
- you could execute a pre-operation **before** the decorated function is executed;
- you could do some operation **while** the decorated function is executed;
- you could execute a post-operation **after** the decorated function is executed.
In this way you can control the execution flow of the decorated function.
### Nested decorator
You could nest more decorator. The order respects the writing order, so:
```python
from decoripy import AbstractDecorator
class First(AbstractDecorator):
def do_before(self, *args, **kwargs):
print("Executing: First do_before")
def do(self, *args, **kwargs):
print("Executing: First do")
return self.function(*args, **kwargs)
def do_after(self, *args, **kwargs):
print("Executing: First do_after")
class Second(AbstractDecorator):
def do_before(self, *args, **kwargs):
print("Executing: Second do_before")
def do(self, *args, **kwargs):
print("Executing: Second do")
return self.function(*args, **kwargs)
def do_after(self, *args, **kwargs):
print("Executing: Second do_after")
@First(timeout=3000)
@Second
def function_to_decorate(var):
print("Executing: function -", var)
```
Result:
```bash
Executing: First do_before
Executing: First do
Executing: Second do_before
Executing: Second do
Executing: function - True
Executing: Second do_after
Executing: First do_after
```
```@First.do_before()``` is executed before, then ```@First.do()```; while
executing it, ```@Second.do_before()``` is triggered, then ```@Second.do()```.
The last functions to be executed are ```@Second.do_after()``` and
```@First.do_after()```, as you could expected.
## 2. Usage
In order to create a new decorator, you have only to write a new class inheriting from the
abstract class AbstractDecorator, and overriding the following (optional) methods:
- ```do_before```: if you want to make some operation **before** the function execution.
You can also return the result of the operation and it is stored in the ```self.before_result```
variable. It can be used in the other ```self.do()``` and ```self.do_after()```
functions.
- ```do```: if you want to add some operation **while** executing the function.
It is mandatory doing the ```self.function(*args, **kwargs)``` call here to trigger the
decorated function execution.
You can also return the result of the operation and it is stored in the ```self.execution_result```
variable. It can be used in the other and ```self.do_after()``` functions.
- ```do_after```: if you want to make some operation **after** the function execution.
You can also return the result of the operation and it is stored in the ```self.after_result```
variable.
The overriding of the three functions is optional. Clearly, no overriding means no
operations done upon the decorated function.
Summarizing, you have only to handle the temporal phases you are interested on.
You can access to the function handler through the ```self.function``` variable.
The decorator unnamed parameters can be accessed through the ```self.args``` variable.
The decorator named parameters can be accessed through the ```self.kwargs``` varaible or
---
Example 1 - No decorator arguments:
```python
from decoripy import AbstractDecorator
class DecoratorWithoutArguments(AbstractDecorator):
def do_before(self, *args, **kwargs):
print("Executing: do_before")
return "Executed: do_before"
def do(self, *args, **kwargs):
print(self.before_result, ", Executing: do")
function_result = self.function(*args, **kwargs)
return function_result + ", Executed: do"
def do_after(self, *args, **kwargs):
print(self.execution_result, ", Executing: do_after")
return "Executed: do_after"
@DecoratorWithoutArguments
def function_to_decorate(var1, var2, dict_var1, dict_var2):
print("Executing: function: ", var1, var2, dict_var1, dict_var2)
return "Executed: function"
function_to_decorate(1, "var2", dict_var1=[1, 2, 3], dict_var2={"key": "value"})
```
---
Example 2 - Decorator arguments
```python
from decoripy import AbstractDecorator
class DecoratorWithParameters(AbstractDecorator):
def do_before(self, *args, **kwargs):
if self.execute_before:
print("Executing: do_before")
return "Executed: do_before"
def do(self, *args, **kwargs):
# Non-existing params -> error!
try:
if self.execute_do:
print(self.before_result, ", Executing: do")
function_result = self.function(*args, **kwargs)
return function_result + ", Executed: do"
except AttributeError:
self.function(*args, **kwargs)
def do_after(self, *args, **kwargs):
if self.execute_after:
print(self.execution_result, ", Executing: do_after")
return "Executed: do_after"
@DecoratorWithParameters(3, execute_before=False, execute_after=False)
def function_to_decorate(var1, var2, dict_var1, dict_var2):
print("Executing: function: ", var1, var2, dict_var1, dict_var2)
return "Executed: function"
function_to_decorate(1, "var2", dict_var1=[1, 2, 3], dict_var2={"key": "value"})
```