معرفی شرکت ها


decneo-1.0.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Comberons from single cell transcriptomics in endothelial cells
ویژگی مقدار
سیستم عامل -
نام فایل decneo-1.0.7
نام decneo
نسخه کتابخانه 1.0.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده S. Domanskyi, A. Hakansson, M. Meng, J. S. Graff Zivin, C. Piermarocchi, G. Paternostro, N. Ferrara
ایمیل نویسنده s.domanskyi@gmail.com
آدرس صفحه اصلی https://github.com/sdomanskyi/decneo
آدرس اینترنتی https://pypi.org/project/decneo/
مجوز MIT License
# DECNEO This repository contains DECNEO, a Python package that provides bioinformatics utilities for analyzing single cell transcriptomics datasets. DECNEO implements in silico detection of transcriptional regulation genes. The documentation is available at Read the Docs: https://decneo.readthedocs.io/ ![logo](https://github.com/sdomanskyi/decneo/blob/master/docs/source/DECNEO.svg) - [Getting Started](#getting-started) * [Installation](#installation) * [Dependencies](#dependencies) - [Functionality](#functionality) * [Overview](#overview) * [Input Data Format](#input-data-format) * [Usage Example](#usage-example) * [Output](#output) - [Funding](#funding) - [Licensing](#licensing) ## Getting Started These are the instructions on how to get a copy of this project up and use it for data analysis. ### Installation The software runs in Python >= 3.8 To install DECNEO as a package: $ pip install decneo Alternatively, clone a local copy of this project to install the package from the cloned directory: git clone https://github.com/sdomanskyi/decneo python setup.py install ### Dependencies DECNEO is dependent on the following packages, that are installed/updated with installation of DECNEO: - [x] Matplotlib - plotting from Python - [x] NetworkX - used in network enrichment analysis - [x] Pandas and tables - for data storage and analysis - [x] NumPy - for processing data - [x] sklearn - we use clustering algorithms and metrics - [x] adjustText - optimization of text labels locations in plots ## Functionality ### Overview The main implementation of DECNEO includes workflow for fast and efficient calculation of single cell gene expression distance (e.g. correlation) followed by the bootstrap technique to account for variation and noise in the input data. The results are summarized in a form of a optimized dendrogram, heatmap and information panels. Analysis of combination of measurements panels allows to identify main and secondary groups of genes that are coexpressed in the cell type of interest. ### Input Data Format Expression data for **two different** species for comparison is required. For each of these species provide the input gene expression data is expected in one of the following formats: 1. Spreadsheet of comma-separated values ``csv`` where rows are genes, columns are cells with gene expression counts, this should be accompanied by another dataframe with two columns with one specifying batches and the other specifying corresponding cells. Alternatively, the first row of the dataframe should be ``'batch'`` and the second ``'cell'``. 2. ``Pandas DataFrame`` where ``axis 0`` is genes and ``axis 1`` are cells. If the are batched in the data then the index of ``axis 1`` should have two levels, e.g. ``('batch', 'cell')``, with the first level indicating patient, batch or expreriment where that cell was sequenced, and the second level containing cell barcodes for identification. For examples refer to documentation. ### Usage Example We have made an example execution file ```demo.py``` that shows how to use ``decneo``. Download file ``VoightChoroid4567RemappedData.h5`` (456.7 Mb) from https://doi.org/10.5281/zenodo.4419880 > This file contains normalized gene expression of 27504 genes of 7996 endothelial cells from > 8 batches, and 5704 non-endothelial cells from 8 batches. Genes that are not expressed in > endothelial cells are removed from non-endothelial cells dataset Save the downloaded data file to ``demo/``, or otherwise modify path in ``demoData`` of ``demo.py``: See details of the script ```demo.py``` at: > [Example walkthrough of demo.py script](https://github.com/sdomanskyi/decneo/blob/master/scripts/demo.py) To execute the complete script ```demo.py``` run: python demo.py If reading demo data gives error "unsupported pickle protocol: 5" make sure that python 3.8 is used and latest version of pandas and tables is installed. ### Output Outputs all resulting directories, files, and figures to directory specified as the ``workingDir`` when creating an instance of class ``Analysis``. It will also output an analysis report detailing all results and figures. For a detailed list, refer to the documentation. ## Funding This research project is a part of R01GM122085 grant, funded by NIH/NIGMS. ## Licensing DECNEO is released under an MIT License. Please also consult the folder LICENSES distributed with DECNEO regarding Licensing information for use of external associated content.


نیازمندی

مقدار نام
>=1.19.1 numpy
>=1.0.1 pandas
>=0.5.1 patsy
>=1.2.0 xlrd
>=3.0.3 openpyxl
>=3.6.1 tables
>=1.4.1 scipy
>=3.1.3 matplotlib
>=0.22.1 scikit-learn
>=2.4 networkx
>=0.7.3 adjustText


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl decneo-1.0.7:

    pip install decneo-1.0.7.whl


نصب پکیج tar.gz decneo-1.0.7:

    pip install decneo-1.0.7.tar.gz