معرفی شرکت ها


decision-boundary-mapper-0.4.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A tool for visualizing the decision boundary of a machine learning model.
ویژگی مقدار
سیستم عامل -
نام فایل decision-boundary-mapper-0.4.3
نام decision-boundary-mapper
نسخه کتابخانه 0.4.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Cristian Grosu
ایمیل نویسنده c.grosu@students.uu.nl
آدرس صفحه اصلی https://github.com/cristi2019255/MasterThesis2023
آدرس اینترنتی https://pypi.org/project/decision-boundary-mapper/
مجوز MIT
# Short Description This is the package provides functionality for visualizing the classifiers decision boundaries. It is based on the work of Cristian Grosu for the master thesis project for 2023 at Utrecht University. If you use this package, please cite the following paper: [placeholder for the paper] The package is available on PyPI and can be installed using pip: `pip install decision-boundary-mapper` ## Documentation See more details at `https://decisionboundarymapper.000webhostapp.com/` ## Usage exmaples 1. This package comes with a simple GUI that allows you to visualize the decision boundaries of a classifier. The GUI is based on the `PySimpleGUI` package and can be started by running the following code: ```python from decision_boundary_mapper import GUI GUI().start() ``` 2. The package comes with two examples of complete pipelines for visualizing the decision boundaries of a classifier. Both examples use `MNIST` (handwritten digits) dataset. The first example `DBM_usage_example` uses `t-SNE` to project the data from the `nD` space to the `2D` space, then neural network is trained to fit the inverse projection from `2D` to `nD` and the decision boundaries are visualized using the `2D` projection. The second example `DBM_usage_example_2` uses `UMAP` to project the data from the `nD` space to the `2D` space, then neural network is trained to fit the inverse projection from `2D` to `nD` and the decision boundaries are visualized using the `2D` projection. After which a simple classifier is used to color each point of the `2D` projection. The second example `SDM_usage_example` uses an Autoencoder Neural Network to project the data from the `nD` space to the `2D` space, then a simple classifier is used to color each point of the `2D` projection. The examples can be found in the `examples` folder. ```python from decision_boundary_mapper import DBM_usage_example, SDM_usage_example DBM_usage_example() # run the first example SDM_usage_example() # run the second example ``` 3. The package main functionality comes in two classes `DBM` (i.e. learns inverse projection when a 2D projection is given) and `SDBM` (i.e. learns both the projection and the inverse projection). The classes can be used as follows: ```python from decision_boundary_mapper import DBM, SDBM from matplotlib import pyplot as plt # load the data ... X_train, X_test, y_train, y_test = load_data() ... # create a simple neural network ... classifier = ... # for compatibility with the package the classifier should be constructed using tensorflow.keras ... dbm = DBM(classifier) # create a DBM object img, img_confidence, _, _, _, _ = dbm.generate_decision_boundary(X_train, y_train, X_test, y_test, resolution = 256) # generate the decision boundary sdbm = SDBM(classifier) # create a SDBM object img, img_confidence, _, _, _, _ = sdbm.generate_decision_boundary(X_train, y_train, X_test, y_test, resolution = 256) # generate the decision boundary ... # visualize the decision boundaries plt.imshow(img) plt.show() ``` Created by Cristian Grosu for the master thesis project for 2023 at Utrecht University


نحوه نصب


نصب پکیج whl decision-boundary-mapper-0.4.3:

    pip install decision-boundary-mapper-0.4.3.whl


نصب پکیج tar.gz decision-boundary-mapper-0.4.3:

    pip install decision-boundary-mapper-0.4.3.tar.gz