معرفی شرکت ها


de-sim-1.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

object-oriented, discrete-event simulation tool for data-intensive modeling of complex systems
ویژگی مقدار
سیستم عامل -
نام فایل de-sim-1.0.5
نام de-sim
نسخه کتابخانه 1.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Karr Lab
ایمیل نویسنده info@karrlab.org
آدرس صفحه اصلی https://github.com/KarrLab/de_sim
آدرس اینترنتی https://pypi.org/project/de-sim/
مجوز MIT
|PyPI package| |Documentation| |Test results| |Test coverage| |Code analysis| |License| |status| |Analytics| *DE-Sim*: a Python-based object-oriented discrete-event simulator for modeling complex systems ============================================================================================== *DE-Sim* is an open-source, Python-based object-oriented discrete-event simulation (DES) tool that makes it easy to use large, heterogeneous datasets and high-level data science tools such as `NumPy <https://numpy.org/>`__, `Scipy <https://scipy.org/scipylib/index.html>`__, `pandas <https://pandas.pydata.org/>`__, and `SQLAlchemy <https://www.sqlalchemy.org/>`__ to build and simulate complex computational models. Similar to `Simula <http://www.simula67.info/>`__, *DE-Sim* models are implemented by defining logical process objects which read the values of a set of variables and schedule events to modify their values at discrete instants in time. To help users build and simulate complex, data-driven models, *DE-Sim* provides the following features: - **High-level, object-oriented modeling:** *DE-Sim* makes it easy for users to use object-oriented Python programming to build models. This makes it easy to use large, heterogeneous datasets and high-level data science packages such as NumPy, pandas, SciPy, and SQLAlchemy to build complex models. - **Stop conditions:** DE-Sim makes it easy to terminate simulations when specific criteria are reached. Researchers can specify stop conditions as functions that return true when a simulation should conclude. - **Results checkpointing:** DE-Sim makes it easy to record the results of simulations by using a configurable checkpointing module. - **Reproducible simulations:** To help researchers debug simulations, repeated executions of the same simulation with the same configuration and same random number generator seed produce the same results. - **Space-time visualizations:** DE-Sim generates space-time visualizations of simulation trajectories. These diagrams can help researchers understand and debug simulations. Projects that use *DE-Sim* -------------------------- *DE-Sim* has been used to develop `WC-Sim <https://github.com/KarrLab/wc_sim>`__, a multi-algorithmic simulator for `whole-cell models <https://www.wholecell.org>`__. Examples -------- - `Minimal simulation <de_sim/examples/minimal_simulation.py>`__: a minimal example of a simulation - `Random walk <de_sim/examples/random_walk.py>`__: a random one-dimensional walk which increments or decrements a variable with equal probability at each event - `Parallel hold (PHOLD) <de_sim/examples/phold.py>`__: model developed by Richard Fujimoto for benchmarking parallel DES simulators - `Epidemic <https://github.com/KarrLab/de_sim/blob/master/de_sim/examples/sirs.py>`__: an SIR model of an epidemic of an infectious disease Tutorial -------- Please see `sandbox.karrlab.org <https://sandbox.karrlab.org/tree/de_sim>`__ for interactive tutorials on creating and executing models with *DE-Sim*. Template for models and simulations ----------------------------------- ```de_sim/examples/minimal_simulation.py`` <de_sim/examples/minimal_simulation.py>`__ contains a template for implementing and simulating a model with *DE-Sim*. Installation ------------ 1. Install dependencies - Python >= 3.7 - pip >= 19 2. Install this package using one of these methods - Install the latest release from PyPI ``pip install de_sim`` - Install a Docker image with the latest release from DockerHub ``docker pull karrlab/de_sim`` - Install the latest version from GitHub ``pip install git+https://github.com/KarrLab/de_sim.git#egg=de_sim`` API documentation ----------------- Please see the `API documentation <https://docs.karrlab.org/de_sim/source/de_sim.html>`__. Performance ----------- Please see the `*DE-Sim* article <joss_paper/paper.md>`__ for information about the performance of *DE-Sim*. Strengths and weaknesses compared to other DES tools ---------------------------------------------------- Please see the `*DE-Sim* article <joss_paper/paper.md>`__ for a comparison of *DE-Sim* with other DES tools. License ------- The package is released under the `MIT license <LICENSE>`__. Citing *DE-Sim* --------------- Please use the following reference to cite *DE-Sim*: Arthur P. Goldberg & Jonathan Karr. (2020). `DE-Sim: an object-oriented, discrete-event simulation tool for data-intensive modeling of complex systems in Python. Journal of Open Source Software, 5(55), 2685. <https://doi.org/10.21105/joss.02685>`__ Contributing to *DE-Sim* ------------------------ We enthusiastically welcome contributions to *DE-Sim*! Please see the `guide to contributing <CONTRIBUTING.md>`__ and the `developer's code of conduct <CODE_OF_CONDUCT.md>`__. Development team ---------------- This package was developed by the `Karr Lab <https://www.karrlab.org>`__ at the Icahn School of Medicine at Mount Sinai in New York, USA by the following individuals: - `Arthur Goldberg <https://www.mountsinai.org/profiles/arthur-p-goldberg>`__ - `Jonathan Karr <https://www.karrlab.org>`__ Acknowledgements ---------------- This work was supported by National Science Foundation award 1649014, National Institutes of Health award R35GM119771, and the Icahn Institute for Data Science and Genomic Technology. Questions and comments ---------------------- Please submit questions and issues to `GitHub <https://github.com/KarrLab/de_sim/issues>`__ or contact the `Karr Lab <mailto:info@karrlab.org>`__. .. |PyPI package| image:: https://img.shields.io/pypi/v/de_sim.svg :target: https://pypi.python.org/pypi/de_sim .. |Documentation| image:: https://readthedocs.org/projects/de-sim/badge/?version=latest :target: https://docs.karrlab.org/de_sim .. |Test results| image:: https://circleci.com/gh/KarrLab/de_sim.svg?style=shield :target: https://circleci.com/gh/KarrLab/de_sim .. |Test coverage| image:: https://coveralls.io/repos/github/KarrLab/de_sim/badge.svg :target: https://coveralls.io/github/KarrLab/de_sim .. |Code analysis| image:: https://api.codeclimate.com/v1/badges/2fa3ece22f571fd36b12/maintainability :target: https://codeclimate.com/github/KarrLab/de_sim .. |License| image:: https://img.shields.io/github/license/KarrLab/de_sim.svg :target: LICENSE .. |status| image:: https://joss.theoj.org/papers/e3ca43be9717d153672c48239939e993/status.svg :target: https://joss.theoj.org/papers/e3ca43be9717d153672c48239939e993 .. |Analytics| image:: https://ga-beacon.appspot.com/UA-86759801-1/de_sim/README.md?pixel


نیازمندی

مقدار نام
- configobj
- logging2
- matplotlib
- numpy
>=3.39 progressbar2
- pympler
- setuptools
>=0.0.16 wc-utils[git]
- capturer
- ipykernel
- nbconvert
- nbformat
>=1.8 sphinx
- sphinx-fontawesome
>=0.4.2 sphinx-rtd-theme
>=0.1.1 sphinxcontrib-addmetahtml
- sphinxcontrib-bibtex
>=0.1.1 sphinxcontrib-googleanalytics
- sphinxcontrib-spelling
- sphinxprettysearchresults
>=1.8 sphinx
- sphinx-fontawesome
>=0.4.2 sphinx-rtd-theme
>=0.1.1 sphinxcontrib-addmetahtml
- sphinxcontrib-bibtex
>=0.1.1 sphinxcontrib-googleanalytics
- sphinxcontrib-spelling
- sphinxprettysearchresults
- capturer
- ipykernel
- nbconvert
- nbformat


نحوه نصب


نصب پکیج whl de-sim-1.0.5:

    pip install de-sim-1.0.5.whl


نصب پکیج tar.gz de-sim-1.0.5:

    pip install de-sim-1.0.5.tar.gz