معرفی شرکت ها


ddataflow-1.1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A tool for end2end data tests
ویژگی مقدار
سیستم عامل -
نام فایل ddataflow-1.1.9
نام ddataflow
نسخه کتابخانه 1.1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Data products GYG
ایمیل نویسنده engineering.data-products@getyourguide.com
آدرس صفحه اصلی https://github.com/getyourguide/DDataFlow
آدرس اینترنتی https://pypi.org/project/ddataflow/
مجوز -
# DDataFlow DDataFlow is an end2end tests and local development solution for machine learning and data pipelines using pyspark. It samples the data as an approach to get slow pipelines run fast in the CI. You can find our documentation in the [docs folder](https://github.com/getyourguide/DDataFlow/tree/main/docs). And see the complete code reference [here](https://code.getyourguide.com/DDataFlow/ddataflow/ddataflow.html). ## Features - Read a subset of our data so to speed up the running of the pipelines during tests - Write to a test location our artifacts so you don't pollute production - Download data for enabling local machine development Enables to run on the pipelines in the CI ## 1. Install Ddataflow ```sh pip install ddataflow ``` `ddataflow --help` will give you an overview of the available commands. # Getting Started (<5min Tutorial) This tutorial aims to show you the core features though, for the complete reference see the [integration manual](docs/integrator_manual.md) in the docs. ## 1. Setup some synthetic data See the [examples folder](examples/pipeline.py). ## 2. Create a ddataflow_config.py file The command `ddtaflow setup_project` creates a file like this for you. ```py from ddataflow import DDataflow config = { # add here your tables or paths with customized sampling logic "data_sources": { "demo_tours": { "source": lambda spark: spark.table('demo_tours'), "filter": lambda df: df.limit(500) } "demo_locations": { "source": lambda spark: spark.table('demo_locations'), "default_sampling": True, } }, "project_folder_name": "ddataflow_demo", } # initialize the application and validate the configuration ddataflow = DDataflow(**config) ``` ## 3. Use ddataflow in a pipeline ```py # filename: pipeline.py from pyspark.sql import SparkSession from ddataflow_config import ddataflow spark = SparkSession.builder.getOrCreate() # register the tables to mimick a real environment # when you use ddatflow for real you will have your production tables in place already spark.read.parquet("/tmp/demo_locations.parquet").registerTempTable("demo_locations") spark.read.parquet("/tmp/demo_tours.parquet").registerTempTable("demo_tours") # pyspark code using a different source name total_locations = spark.table(ddataflow.name('demo_locations')).count() # sql code also works total_tours = spark.sql(f""" SELECT COUNT(1) from {ddataflow.name('demo_tours')}""").collect()[0]['count(1)'] print("Totals follow below:") print({ "total_locations": total_locations, "total_tours": total_tours, }) ``` Now run it twice and observe the difference in the amount of records: `python pipeline.py` `ENABLE_DDATAFLOW=True python pipeline.py` You will see that the dataframes are sampled when ddataflow is enabled and full when the tool is disabled. You completed the short demo! ## How to develop The recommended approach to use ddataflow is to use the offline mode, which allows you to test your pipelines without the need for an active cluster. This is especially important for development and debugging purposes, as it allows you to quickly test and identify any issues with your pipelines. Alternatively, you can use Databricks Connect to test your pipelines on an active cluster. However, our experience with this approach has not been great, memory issues are common and there is the risk of overriding production data, so we recommend using the offline mode instead. If you have any questions or need any help, please don't hesitate to reach out. We are here to help you get the most out of ddataflow. ## Support In case of questions feel free to reach out or create an issue. Check out our [FAQ in case of problems](https://github.com/getyourguide/DDataFlow/blob/main/docs/FAQ.md) ## Contributing This project requires manual release at the moment. See the docs and request a pypi access if you want to contribute.


نیازمندی

مقدار نام
>=0.16 databricks-cli
>3 pyspark
>=0.4 fire
>=3.2.1 oauthlib
>=1.24.2 urllib3


زبان مورد نیاز

مقدار نام
>=3.8,<4 Python


نحوه نصب


نصب پکیج whl ddataflow-1.1.9:

    pip install ddataflow-1.1.9.whl


نصب پکیج tar.gz ddataflow-1.1.9:

    pip install ddataflow-1.1.9.tar.gz