معرفی شرکت ها


dcbench-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

This is a benchmark that tests various data-centric aspects of improving the quality of machine learning workflows.
ویژگی مقدار
سیستم عامل -
نام فایل dcbench-0.0.4
نام dcbench
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده https://github.com/data-centric-ai/dcbench
ایمیل نویسنده sabri@eyuboglu.us
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/dcbench/
مجوز Apache 2.0
<div align="center"> <img src="docs/assets/banner.png" height=150 alt="banner"/> ----- ![GitHub Workflow Status](https://img.shields.io/github/workflow/status/data-centric-ai/dcbench/CI) ![GitHub](https://img.shields.io/github/license/data-centric-ai/dcbench) [![Documentation Status](https://readthedocs.org/projects/dcbench/badge/?version=latest)](https://dcbench.readthedocs.io/en/latest/?badge=latest) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/dcbench)](https://pypi.org/project/dcbench/) [![codecov](https://codecov.io/gh/data-centric-ai/dcbench/branch/main/graph/badge.svg?token=MOLQYUSYQU)](https://codecov.io/gh/data-centric-ai/dcbench) A benchmark of data-centric tasks from across the machine learning lifecycle. [**Getting Started**](#%EF%B8%8F-quickstart) | [**What is dcbench?**](#-what-is-dcbench) | [**Docs**](https://dcbench.readthedocs.io/en/latest/index.html) | [**Contributing**](CONTRIBUTING.md) | [**Website**](https://www.datacentricai.cc/) | [**About**](#%EF%B8%8F-about) </div> ## ⚡️ Quickstart ```bash pip install dcbench ``` > Optional: some parts of Meerkat rely on optional dependencies. If you know which optional dependencies you'd like to install, you can do so using something like `pip install dcbench[dev]` instead. See setup.py for a full list of optional dependencies. > Installing from dev: `pip install "dcbench[dev] @ git+https://github.com/data-centric-ai/dcbench@main"` Using a Jupyter notebook or some other interactive environment, you can import the library and explore the data-centric problems in the benchmark: ```python import dcbench dcbench.tasks ``` To learn more, follow the [walkthrough](https://dcbench.readthedocs.io/en/latest/intro.html#api-walkthrough) in the docs. ## 💡 What is dcbench? This benchmark evaluates the steps in your machine learning workflow beyond model training and tuning. This includes feature cleaning, slice discovery, and coreset selection. We call these “data-centric” tasks because they're focused on exploring and manipulating data – not training models. ``dcbench`` supports a growing list of them: * [Minimal Data Selection](https://dcbench.readthedocs.io/en/latest/tasks.html#minimal-data-selection) * [Slice Discovery](https://dcbench.readthedocs.io/en/latest/tasks.html#slice-discovery) * [Minimal Feature Cleaning](https://dcbench.readthedocs.io/en/latest/tasks.html#minimal-feature-cleaning) ``dcbench`` includes tasks that look very different from one another: the inputs and outputs of the slice discovery task are not the same as those of the minimal data cleaning task. However, we think it important that researchers and practitioners be able to run evaluations on data-centric tasks across the ML lifecycle without having to learn a bunch of different APIs or rewrite evaluation scripts. So, ``dcbench`` is designed to be a common home for these diverse, but related, tasks. In ``dcbench`` all of these tasks are structured in a similar manner and they are supported by a common Python API that makes it easy to download data, run evaluations, and compare methods. ## ✉️ About `dcbench` is being developed alongside the data-centric-ai benchmark. Reach out to Bojan Karlaš (karlasb [at] inf [dot] ethz [dot] ch) and Sabri Eyuboglu (eyuboglu [at] stanford [dot] edu if you would like to get involved or contribute!)


نیازمندی

مقدار نام
>=8.0.0 click
>=5.4 pyyaml
- pre-commit
- pandas
>=1.18.0 numpy
- ujson
>=1.2.0 jsonlines
>=4.49.0 tqdm
- scikit-learn
- meerkat-ml[dev,ml,vision]
==21.5b0 black
>=5.7.0 isort
>=3.8.4 flake8
>=0.9 mypy
>=1.4 docformatter
>=2.10.1 pytest-cov
>=0.5.1 sphinx-rtd-theme
>=0.8.0 nbsphinx
>=0.7.1 recommonmark
- parameterized
>=2.9.3 pre-commit
- sphinx-autobuild
- google-cloud-storage
- furo


زبان مورد نیاز

مقدار نام
>=3.7.0 Python


نحوه نصب


نصب پکیج whl dcbench-0.0.4:

    pip install dcbench-0.0.4.whl


نصب پکیج tar.gz dcbench-0.0.4:

    pip install dcbench-0.0.4.tar.gz