معرفی شرکت ها


dbt-teradata-1.3.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

The Teradata adapter plugin for dbt (data build tool)
ویژگی مقدار
سیستم عامل -
نام فایل dbt-teradata-1.3.3.0
نام dbt-teradata
نسخه کتابخانه 1.3.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Teradata Corporation
ایمیل نویسنده developers@teradata.com
آدرس صفحه اصلی https://github.com/Teradata/dbt-teradata
آدرس اینترنتی https://pypi.org/project/dbt-teradata/
مجوز -
# dbt-teradata This plugin ports [dbt](https://getdbt.com) functionality to Teradata Vantage. ## Installation ``` pip install dbt-teradata ``` If you are new to dbt on Teradata see [dbt with Teradata Vantage tutorial](https://quickstarts.teradata.com/dbt.html). ## Sample profile Here is a working example of a `dbt-teradata` profile: ```yaml my-teradata-db-profile: target: dev outputs: dev: type: teradata host: localhost user: dbc password: dbc schema: dbt_test tmode: ANSI ``` At a minimum, you need to specify `host`, `user`, `password`, `schema` (database), `tmode`. ## Python compatibility | Plugin version | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10 | | -------------- | ----------- | ----------- | ----------- | ----------- | ----------- | | 0.19.0.x | ✅ | ✅ | ✅ | ❌ | ❌ | | 0.20.0.x | ✅ | ✅ | ✅ | ✅ | ❌ | | 0.21.1.x | ✅ | ✅ | ✅ | ✅ | ❌ | | 1.0.0.x | ❌ | ✅ | ✅ | ✅ | ❌ | |1.1.0.x | ❌ | ✅ | ✅ | ✅ | ✅ | |1.2.0.x | ❌ | ✅ | ✅ | ✅ | ✅ | |1.3.0.x | ❌ | ✅ | ✅ | ✅ | ✅ | ## dbt dependent packages version compatibility | dbt-teradta | dbt-core | dbt-teradata-util | dbt-util | |-------------|------------|-------------------|----------------| | 1.2.x | 1.2.x | 0.1.0 | 0.9.x or below | ## Optional profile configurations ### Logmech The logon mechanism for Teradata jobs that dbt executes can be configured with the `logmech` configuration in your Teradata profile. The `logmech` field can be set to: `TD2`, `LDAP`, `KRB5`, `TDNEGO`. For more information on authentication options, go to [Teradata Vantage authentication documentation](https://docs.teradata.com/r/8Mw0Cvnkhv1mk1LEFcFLpw/0Ev5SyB6_7ZVHywTP7rHkQ). ```yaml my-teradata-db-profile: target: dev outputs: dev: type: teradata host: <host> user: <user> password: <password> schema: dbt_test tmode: ANSI logmech: LDAP ``` ### Logdata The logon mechanism for Teradata jobs that dbt executes can be configured with the `logdata` configuration in your Teradata profile. Addtional data like secure token, distinguished Name, or a domain/realm name can be set in your Teradata profile using `logdata`. The `logdata` field can be set to: `JWT`, `LDAP`, `KRB5`, `TDNEGO`. `logdata` is not used with the TD2 mechanism. ```yaml my-teradata-db-profile: target: dev outputs: dev: type: teradata host: <host> schema: dbt_test tmode: ANSI logmech: LDAP logdata: 'authcid=username password=password' port: <port> ``` For more information on authentication options, go to [Teradata Vantage authentication documentation](https://docs.teradata.com/r/8Mw0Cvnkhv1mk1LEFcFLpw/0Ev5SyB6_7ZVHywTP7rHkQ) ### Stored Password Protection Stored Password Protection enables an application to provide a connection password in encrypted form to the driver. The plugin supports Stored Password Protection feature through prefix `ENCRYPTED_PASSWORD(` either in `password` connection parameter or in `logdata` connection parameter. * `password` ```yaml my-teradata-db-profile: target: dev outputs: dev: type: teradata host: <host> user: <user> password: ENCRYPTED_PASSWORD(file:PasswordEncryptionKeyFileName,file:EncryptedPasswordFileName) schema: dbt_test tmode: ANSI port: <port> ``` * `logdata` ```yaml my-teradata-db-profile: target: dev outputs: dev: type: teradata host: <host> schema: dbt_test tmode: ANSI logmech: LDAP logdata: 'authcid=username password=ENCRYPTED_PASSWORD(file:PasswordEncryptionKeyFileName,file:EncryptedPasswordFileName)' port: <port> ``` For full description of Stored Password Protection see https://github.com/Teradata/python-driver#StoredPasswordProtection. ### Port If your Teradata database runs on port different than the default (1025), you can specify a custom port in your dbt profile using `port` configuration. ```yaml my-teradata-db-profile: target: dev outputs: dev: type: teradata host: <host> user: <user> password: <password> schema: dbt_test tmode: ANSI port: <port> ``` ### Retries Allows an adapter to automatically try again when the attempt to open a new connection on the database has a transient, infrequent error. This option can be set using the `retries` configuration. Default value is 0. The default wait period between connection attempts is one second. `retry_timeout` (seconds) option allows us to adjust this waiting period. If `retries` is set to 3, the adapter will try to establish a new connection three times if an error occurs. ```yaml my-teradata-db-profile: target: dev outputs: dev: type: teradata host: <host> user: <user> password: <password> schema: dbt_test tmode: ANSI retries: 3 retry_timeout: 10 ``` ### Other Teradata connection parameters The plugin also supports the following Teradata connection parameters: * account * column_name * cop * coplast * encryptdata * fake_result_sets * field_quote * field_sep * lob_support * log * logdata * max_message_body * partition * sip_support * teradata_values For full description of the connection parameters see https://github.com/Teradata/python-driver#connection-parameters. ## Supported Features ### Materializations * `view` * `table` * `ephemeral` * `incremental` #### Incremental Materialization The following incremental materialization strategies are supported: * `append` (default) * `delete+insert` To learn more about dbt incremental strategies please check [the dbt incremental strategy documentation](https://docs.getdbt.com/docs/build/incremental-models#about-incremental_strategy). ### Commands All dbt commands are supported. ### Custom configurations #### General * *Enable view column types in docs* - Teradata Vantage has a dbscontrol configuration flag called `DisableQVCI` (QVCI - Queryable View Column Index). This flag instructs the database to build `DBC.ColumnsJQV` with view column type definitions. > :information_source: Existing customers, please see [KB0022230](https://support.teradata.com/knowledge?id=kb_article_view&sys_kb_id=d066248b1b0000187361c8415b4bcb48) for more information about enabling QVCI. To enable this functionality you need to: 1. Enable QVCI mode in Vantage. Use `dbscontrol` utility and then restart Teradata. Run these commands as a privileged user on a Teradata node: ```bash # option 551 is DisableQVCI. Setting it to false enables QVCI. dbscontrol << EOF M internal 551=false W EOF # restart Teradata tpareset -y Enable QVCI ``` 2. Instruct `dbt` to use `QVCI` mode. Include the following variable in your `dbt_project.yml`: ```yaml vars: use_qvci: true ``` For example configuration, see `test/catalog/with_qvci/dbt_project.yml`. #### Models ##### Table The following options apply to table, snapshots and seed materializations. * `table_kind` - define the table kind. Legal values are `MULTISET` (default for ANSI transaction mode required by `dbt-teradata`) and `SET`, e.g.: * in sql materialization definition file: ```yaml {{ config( materialized="table", table_kind="SET" ) }} ``` * in seed configuration: ```yaml seeds: <project-name>: table_kind: "SET" ``` For details, see [CREATE TABLE documentation](https://docs.teradata.com/r/76g1CuvvQlYBjb2WPIuk3g/B6Js16DRQVwPDjgJ8rz7hg). * `table_option` - define table options. Legal values are: ```ebnf { MAP = map_name [COLOCATE USING colocation_name] | [NO] FALLBACK [PROTECTION] | WITH JOURNAL TABLE = table_specification | [NO] LOG | [ NO | DUAL ] [BEFORE] JOURNAL | [ NO | DUAL | LOCAL | NOT LOCAL ] AFTER JOURNAL | CHECKSUM = { DEFAULT | ON | OFF } | FREESPACE = integer [PERCENT] | mergeblockratio | datablocksize | blockcompression | isolated_loading } ``` where: * mergeblockratio: ```ebnf { DEFAULT MERGEBLOCKRATIO | MERGEBLOCKRATIO = integer [PERCENT] | NO MERGEBLOCKRATIO } ``` * datablocksize: ```ebnf DATABLOCKSIZE = { data_block_size [ BYTES | KBYTES | KILOBYTES ] | { MINIMUM | MAXIMUM | DEFAULT } DATABLOCKSIZE } ``` * blockcompression: ```ebnf BLOCKCOMPRESSION = { AUTOTEMP | MANUAL | ALWAYS | NEVER | DEFAULT } [, BLOCKCOMPRESSIONALGORITHM = { ZLIB | ELZS_H | DEFAULT } ] [, BLOCKCOMPRESSIONLEVEL = { value | DEFAULT } ] ``` * isolated_loading: ```ebnf WITH [NO] [CONCURRENT] ISOLATED LOADING [ FOR { ALL | INSERT | NONE } ] ``` Examples: * in sql materialization definition file: ```yaml {{ config( materialized="table", table_option="NO FALLBACK" ) }} ``` ```yaml {{ config( materialized="table", table_option="NO FALLBACK, NO JOURNAL" ) }} ``` ```yaml {{ config( materialized="table", table_option="NO FALLBACK, NO JOURNAL, CHECKSUM = ON, NO MERGEBLOCKRATIO, WITH CONCURRENT ISOLATED LOADING FOR ALL" ) }} ``` * in seed configuration: ```yaml seeds: <project-name>: table_option:"NO FALLBACK" ``` ```yaml seeds: <project-name>: table_option:"NO FALLBACK, NO JOURNAL" ``` ```yaml seeds: <project-name>: table_option: "NO FALLBACK, NO JOURNAL, CHECKSUM = ON, NO MERGEBLOCKRATIO, WITH CONCURRENT ISOLATED LOADING FOR ALL" ``` For details, see [CREATE TABLE documentation](https://docs.teradata.com/r/76g1CuvvQlYBjb2WPIuk3g/B6Js16DRQVwPDjgJ8rz7hg). * `with_statistics` - should statistics be copied from the base table, e.g.: ```yaml {{ config( materialized="table", with_statistics="true" ) }} ``` This option is not available for seeds as seeds do not use `CREATE TABLE ... AS` syntax. For details, see [CREATE TABLE documentation](https://docs.teradata.com/r/76g1CuvvQlYBjb2WPIuk3g/B6Js16DRQVwPDjgJ8rz7hg). * `index` - defines table indices: ```ebnf [UNIQUE] PRIMARY INDEX [index_name] ( index_column_name [,...] ) | NO PRIMARY INDEX | PRIMARY AMP [INDEX] [index_name] ( index_column_name [,...] ) | PARTITION BY { partitioning_level | ( partitioning_level [,...] ) } | UNIQUE INDEX [ index_name ] [ ( index_column_name [,...] ) ] [loading] | INDEX [index_name] [ALL] ( index_column_name [,...] ) [ordering] [loading] [,...] ``` where: * partitioning_level: ```ebnf { partitioning_expression | COLUMN [ [NO] AUTO COMPRESS | COLUMN [ [NO] AUTO COMPRESS ] [ ALL BUT ] column_partition ] } [ ADD constant ] ``` * ordering: ```ebnf ORDER BY [ VALUES | HASH ] [ ( order_column_name ) ] ``` * loading: ```ebnf WITH [NO] LOAD IDENTITY ``` e.g.: * in sql materialization definition file: ```yaml {{ config( materialized="table", index="UNIQUE PRIMARY INDEX ( GlobalID )" ) }} ``` > :information_source: Note, unlike in `table_option`, there are no commas between index statements! ```yaml {{ config( materialized="table", index="PRIMARY INDEX(id) PARTITION BY RANGE_N(create_date BETWEEN DATE '2020-01-01' AND DATE '2021-01-01' EACH INTERVAL '1' MONTH)" ) }} ``` ```yaml {{ config( materialized="table", index="PRIMARY INDEX(id) PARTITION BY RANGE_N(create_date BETWEEN DATE '2020-01-01' AND DATE '2021-01-01' EACH INTERVAL '1' MONTH) INDEX index_attrA (attrA) WITH LOAD IDENTITY" ) }} ``` * in seed configuration: ```yaml seeds: <project-name>: index: "UNIQUE PRIMARY INDEX ( GlobalID )" ``` > :information_source: Note, unlike in `table_option`, there are no commas between index statements! ```yaml seeds: <project-name>: index: "PRIMARY INDEX(id) PARTITION BY RANGE_N(create_date BETWEEN DATE '2020-01-01' AND DATE '2021-01-01' EACH INTERVAL '1' MONTH)" ``` ```yaml seeds: <project-name>: index: "PRIMARY INDEX(id) PARTITION BY RANGE_N(create_date BETWEEN DATE '2020-01-01' AND DATE '2021-01-01' EACH INTERVAL '1' MONTH) INDEX index_attrA (attrA) WITH LOAD IDENTITY" ``` #### Seeds Seeds, in addition to the above materialization modifiers, have the following options: * `use_fastload` - use [fastload](https://github.com/Teradata/python-driver#FastLoad) when handling `dbt seed` command. The option will likely speed up loading when your seed files have hundreds of thousands of rows. You can set this seed configuration option in your `project.yml` file, e.g.: ```yaml seeds: <project-name>: +use_fastload: true ``` #### Grants Grants are supported in dbt-teradata adapter with release version 1.2.0 and above. You can use grants to manage access to the datasets you're producing with dbt. To implement these permissions, define grants as resource configs on each model, seed, or snapshot. Define the default grants that apply to the entire project in your `dbt_project.yml`, and define model-specific grants within each model's SQL or YAML file. for e.g. : models/schema.yml ```yaml models: - name: model_name config: grants: select: ['user_a', 'user_b'] ``` Another e.g. for adding multiple grants: ```yaml models: - name: model_name config: materialized: table grants: select: ["user_b"] insert: ["user_c"] ``` > :information_source: `copy_grants` is not supported in Teradata. More on Grants can be found at https://docs.getdbt.com/reference/resource-configs/grants ### Cross DB macros Starting with release 1.3, some macros were migrated from [teradata-dbt-utils](https://github.com/Teradata/dbt-teradata-utils) dbt package to the connector. See the table below for the macros supported from the connector. For using cross DB macros, teradata-utils as a macro namespace will not be used, as cross DB macros have been migrated from teradata-utils to Dbt-Teradata. #### Compatibility | Macro Group | Macro Name | Status | Comment | |:---------------------:|:-----------------------------:|:---------------------:|:----------------------------------------------------------------------:| | Cross-database macros | current_timestamp | :white_check_mark: | custom macro provided | | Cross-database macros | dateadd | :white_check_mark: | custom macro provided | | Cross-database macros | datediff | :white_check_mark: | custom macro provided, see [compatibility note](#datediff) | | Cross-database macros | split_part | :white_check_mark: | custom macro provided | | Cross-database macros | date_trunc | :white_check_mark: | custom macro provided | | Cross-database macros | hash | :white_check_mark: | custom macro provided, see [compatibility note](#hash) | | Cross-database macros | replace | :white_check_mark: | custom macro provided | | Cross-database macros | type_string | :white_check_mark: | custom macro provided | | Cross-database macros | last_day | :white_check_mark: | no customization needed, see [compatibility note](#last_day) | | Cross-database macros | width_bucket | :white_check_mark: | no customization #### examples for cross DB macros Replace: {{ dbt.replace("string_text_column", "old_chars", "new_chars") }} {{ replace('abcgef', 'g', 'd') }} Date truncate: {{ dbt.date_trunc("date_part", "date") }} {{ dbt.date_trunc("DD", "'2018-01-05 12:00:00'") }} #### <a name="datediff"></a>datediff `datediff` macro in teradata supports difference between dates. Differece between timestamps is not supported. #### <a name="hash"></a>hash `Hash` macro needs an `md5` function implementation. Teradata doesn't support `md5` natively. You need to install a User Defined Function (UDF): 1. Download the md5 UDF implementation from Teradata (registration required): https://downloads.teradata.com/download/extensibility/md5-message-digest-udf. 1. Unzip the package and go to `src` directory. 1. Start up `bteq` and connect to your database. 1. Create database `GLOBAL_FUNCTIONS` that will host the UDF. You can't change the database name as it's hardcoded in the macro: ```sql CREATE DATABASE GLOBAL_FUNCTIONS AS PERMANENT = 60e6, SPOOL = 120e6; ``` 1. Create the UDF. Replace `<CURRENT_USER>` with your current database user: ```sql GRANT CREATE FUNCTION ON GLOBAL_FUNCTIONS TO <CURRENT_USER>; DATABASE GLOBAL_FUNCTIONS; .run file = hash_md5.btq ``` 1. Grant permissions to run the UDF with grant option. ```sql GRANT EXECUTE FUNCTION ON GLOBAL_FUNCTIONS TO PUBLIC WITH GRANT OPTION; ``` #### <a name="last_day"></a>last_day `last_day` in `teradata_utils`, unlike the corresponding macro in `dbt_utils`, doesn't support `quarter` datepart. ## Common Teradata-specific tasks * *collect statistics* - when a table is created or modified significantly, there might be a need to tell Teradata to collect statistics for the optimizer. It can be done using `COLLECT STATISTICS` command. You can perform this step using dbt's `post-hooks`, e.g.: ```yaml {{ config( post_hook=[ "COLLECT STATISTICS ON {{ this }} COLUMN (column_1, column_2 ...);" ] )}} ``` See [Collecting Statistics documentation](https://docs.teradata.com/r/76g1CuvvQlYBjb2WPIuk3g/RAyUdGfvREwbO9J0DMNpLw) for more information. ## Support for `dbt-utils` package `dbt-utils` package is supported through `teradata/teradata_utils` dbt package. The package provides a compatibility layer between `dbt_utils` and `dbt-teradata`. See [teradata_utils](https://hub.getdbt.com/teradata/teradata_utils/latest/) package for install instructions. ## Limitations ### Transaction mode Only ANSI transaction mode is supported. ## Credits The adapter was originally created by [Doug Beatty](https://github.com/dbeatty10). Teradata took over the adapter in January 2022. We are grateful to Doug for founding the project and accelerating the integration of dbt + Teradata. ## License The adapter is published using Apache-2.0 License. Please see [the license](LICENSE) for terms and conditions, such as creating derivative work and the support model.


نیازمندی

مقدار نام
==1.3.3 dbt-core
>=16.20.0.0 teradatasql


زبان مورد نیاز

مقدار نام
>=3.7,<3.11 Python


نحوه نصب


نصب پکیج whl dbt-teradata-1.3.3.0:

    pip install dbt-teradata-1.3.3.0.whl


نصب پکیج tar.gz dbt-teradata-1.3.3.0:

    pip install dbt-teradata-1.3.3.0.tar.gz