معرفی شرکت ها


dbt-metabase-0.9.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Model synchronization from dbt to Metabase.
ویژگی مقدار
سیستم عامل -
نام فایل dbt-metabase-0.9.9
نام dbt-metabase
نسخه کتابخانه 0.9.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mike Gouline
ایمیل نویسنده hello@gouline.net
آدرس صفحه اصلی https://github.com/gouline/dbt-metabase
آدرس اینترنتی https://pypi.org/project/dbt-metabase/
مجوز MIT License
dbt-metabase ############ .. image:: https://github.com/gouline/dbt-metabase/actions/workflows/master.yml/badge.svg :target: https://github.com/gouline/dbt-metabase/actions/workflows/master.yml :alt: GitHub Actions .. image:: https://img.shields.io/pypi/v/dbt-metabase :target: https://pypi.org/project/dbt-metabase/ :alt: PyPI .. image:: https://pepy.tech/badge/dbt-metabase :target: https://pepy.tech/project/dbt-metabase :alt: Downloads .. image:: https://img.shields.io/badge/License-MIT-yellow.svg :target: https://github.com/gouline/dbt-metabase/blob/master/LICENSE :alt: License: MIT .. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black :alt: Code style: black Model synchronization from `dbt`_ to `Metabase`_. .. _`dbt`: https://www.getdbt.com/ .. _`Metabase`: https://www.metabase.com/ If dbt is your source of truth for database schemas and you use Metabase as your analytics tool, dbt-metabase can propagate table relationships, model and column descriptions and semantic types (e.g. currency, category, URL) to your Metabase data model. Requirements ============ Requires Python 3.6 or above. Main features ============= The main features provided by dbt-metabase are: * Parsing your dbt project (either through the ``manifest.json`` or directly through the YAML files) * Triggering a Metabase schema sync before propagating the metadata * Propagating table descriptions to Metabase * Propagating columns description to Metabase * Propagating columns semantic types and visibility types to Metabase through the use of dbt meta fields * Propagating table relationships represented as dbt ``relationships`` column tests * Extracting dbt model exposures from Metabase and generating YAML files to be included and revisioned with your dbt deployment Usage ===== You can install dbt-metabase from `PyPI`_: .. _`PyPI`: https://pypi.org/project/dbt-metabase/ .. code-block:: shell pip install dbt-metabase Sections below demonstrate basic usage examples, for all CLI options: .. code-block:: shell dbt-metabase --help When invoking programmatically, click through to implementation and refer to header comments. Basic Example ------------- Let's start by defining a short sample ``schema.yml`` as below. .. code-block:: yaml models: - name: stg_users description: User records. columns: - name: id description: Primary key. tests: - not_null - unique - name: email description: User's email address. - name: group_id description: Foreign key to user group. tests: - not_null - relationships: to: ref('groups') field: id - name: stg_groups description: User groups. columns: - name: id description: Primary key. tests: - not_null - unique - name: name description: Group name. That's already enough to propagate the primary keys, foreign keys and descriptions to Metabase by executing the below command. .. code-block:: shell dbt-metabase models \ --dbt_path . \ --dbt_database business \ --metabase_host metabase.example.com \ --metabase_user user@example.com \ --metabase_password Password123 \ --metabase_database business \ --dbt_schema public Check your Metabase instance by going into Settings > Admin > Data Model, you will notice that ``ID`` in ``STG_USERS`` is now marked as "Entity Key" and ``GROUP_ID`` is marked as "Foreign Key" pointing to ``ID`` in ``STG_GROUPS``. Exposure Extraction ------------------- dbt-metabase also allows us to extract exposures from Metabase. The invocation is almost identical to our models function with the addition of output name and location args. `dbt exposures`_ let us understand how our dbt models are exposed in BI which closes the loop between ELT, modelling, and consumption. .. _`dbt exposures`: https://docs.getdbt.com/docs/building-a-dbt-project/exposures .. code-block:: shell dbt-metabase exposures \ --dbt_manifest_path ./target/manifest.json \ --dbt_database business \ --metabase_host metabase.example.com \ --metabase_user user@example.com \ --metabase_password Password123 \ --metabase_database business \ --output_path ./models/ \ --output_name metabase_exposures Once execution completes, a look at the output ``metabase_exposures.yml`` will reveal all metabase exposures documented with the documentation, descriptions, creator emails & names, links to exposures, and even native SQL propagated over from Metabase. .. code-block:: yaml exposures: - name: Number_of_orders_over_time description: ' ### Visualization: Line A line chart depicting how order volume changes over time #### Metadata Metabase Id: __8__ Created On: __2021-07-21T08:01:38.016244Z__' type: analysis url: http://your.metabase.com/card/8 maturity: medium owner: name: Indiana Jones email: user@example.com depends_on: - ref('orders') Questions which are native queries will have the SQL propagated to a code block in the documentation's description for full visibility. This YAML, like the rest of your dbt project can be committed to source control to understand how exposures change over time. In a production environment, one can trigger ``dbt docs generate`` after ``dbt-metabase exposures`` (or alternatively run the exposure extraction job on a cadence every X days) in order to keep a dbt docs site fully synchronized with BI. This makes ``dbt docs`` a useful utility for introspecting the data model from source -> consumption with zero extra/repeated human input. Reading your dbt project ------------------------ There are two approaches provided by this library to read your dbt project: 1. Artifacts ^^^^^^^^^^^^ You can instruct dbt-metabase to read your ``manifest.json``, a `dbt artifact`_ containing the full representation of your dbt project's resources. If your dbt project uses multiple schemas, multiple databases or model aliases, you must use this approach. Note that you you have to run ``dbt compile --target prod`` or any of the other dbt commands listed in the dbt documentation above to get a fresh copy of your ``manifest.json``. Remember to run it against your production target. When using the ``dbt-metabase`` CLI, you must provide a ``--dbt_manifest_path`` argument pointing to your ``manifest.json`` file (usually in the ``target/`` folder of your dbt project). .. _`dbt artifact`: https://docs.getdbt.com/reference/artifacts/dbt-artifacts 2. Direct parsing ^^^^^^^^^^^^^^^^^ Alternatively, you can provide the path to your dbt project root folder using the argument ``--dbt_path``. dbt-metabase will then look for all .yml files and parse your documentation and tests directly from there. It does not support dbt projects with custom schemas. Semantic Types -------------- Now that we have primary and foreign keys, let's tell Metabase that ``email`` column contains email addresses. Change the ``email`` column as follows: .. code-block:: yaml - name: email description: User's email address. meta: metabase.semantic_type: type/Email Once you run ``dbt-metabase models`` again, you will notice that ``EMAIL`` is now marked as "Email". Here are common semantic types (formerly known as special types) accepted by Metabase: * ``type/PK`` * ``type/FK`` * ``type/Number`` * ``type/Currency`` * ``type/Category`` * ``type/Title`` * ``type/Description`` * ``type/City`` * ``type/State`` * ``type/ZipCode`` * ``type/Country`` * ``type/Latitude`` * ``type/Longitude`` * ``type/Email`` * ``type/URL`` * ``type/ImageURL`` * ``type/SerializedJSON`` * ``type/CreationTimestamp`` See `documentation`_ for a more complete list. .. _`documentation`: https://www.metabase.com/docs/latest/users-guide/field-types.html Foreign Keys ------------ Built-in relationship tests are the recommended way of defining foreign keys, however you can alternatively use ``fk_target_table`` and ``fk_target_field`` meta fields (``semantic_type`` is optional and will be inferred). If both are set for a column, meta fields take precedence. .. code-block:: yaml - name: country_id description: FK to User's country in the dim_countries table. meta: metabase.semantic_type: type/FK metabase.fk_target_table: analytics_dims.dim_countries metabase.fk_target_field: id You can provide ``fk_target_table`` in the format ``schema_name.table_name`` or just ``table_name`` to use the current schema. If your model has an alias, provide that alias (rather than the original name). Visibility Types ---------------- In addition to semantic types, you can optionally specify visibility for each table and field. This affects whether or not they are displayed in the Metabase UI. Here is how you would hide that same email: .. code-block:: yaml - name: email description: User's email address. meta: metabase.semantic_type: type/Email metabase.visibility_type: sensitive Here are the field visibility types supported by Metabase: * ``normal`` (default) * ``details-only`` * ``sensitive`` Tables only support the following: * No value for visible (default) * ``hidden`` * ``technical`` * ``cruft`` If you notice new ones, please submit a PR to update this readme. Model Extra Fields ------------------ In addition to the model description, Metabase accepts two extra information fields. Those optional fields are called ``caveats`` and ``points_of_interest`` and can be defined under the ``meta`` tag of the model. This is how you can specify them in the ``stg_users`` example: .. code-block:: yaml - name: stg_users description: User records. meta: metabase.points_of_interest: Relevant records. metabase.caveats: Sensitive information about users. Database Sync ------------- By default, dbt-metabase will tell Metabase to synchronize database fields and wait for the data model to contain all the tables and columns in your dbt project. You can control this behavior with two arguments: * ``--metabase_sync_skip`` - boolean to optionally disable pre-synchronization * ``--metabase_sync_timeout`` - number of seconds to wait and re-check data model before giving up Configuration ------------- .. code-block:: shell dbt-metabase config Using the above command, you can enter an interactive configuration session where you can cache default selections for arguments. This creates a ``config.yml`` in ~/.dbt-metabase. This is particularly useful for arguments which are repeated on every invocation like metabase_user, metabase_host, metabase_password, dbt_manifest_path, etc. In addition, there are a few injected env vars that make deploying dbt-metabase in a CI/CD environment simpler without exposing secrets. Listed below are acceptable env vars which correspond to their CLI flags: * ``DBT_DATABASE`` * ``DBT_PATH`` * ``DBT_MANIFEST_PATH`` * ``MB_USER`` * ``MB_PASSWORD`` * ``MB_HOST`` * ``MB_DATABASE`` If any one of the above is present in the environment, the corresponding CLI flag is not needed unless overriding the environment value. In the absence of a CLI flag, dbt-metabase will first look to the environment for any env vars to inject, then we will look to the config.yml for cached defaults. A ``config.yml`` can be created or updated manually as well if needed. The only requirement is that it must be located in ~/.dbt-metabase. The layout is as follows: .. code-block:: yaml config: dbt_database: reporting dbt_manifest_path: /home/user/dbt/target/manifest.json metabase_database: Reporting metabase_host: reporting.metabase.io metabase_user: user@source.co metabase_password: ... metabase_use_http: false metabase_sync: true metabase_sync_timeout: null dbt_schema_excludes: - development - testing dbt_excludes: - test_monday_io_site_diff Programmatic Invocation ----------------------- As you have already seen, you can invoke dbt-metabase from the command line. But if you prefer to call it from your code, here's how to do it: .. code-block:: python from dbtmetabase.models.interface import MetabaseInterface, DbtInterface # Instantiate dbt interface dbt = DbtInterface( path=dbt_path, manifest_path=dbt_manifest_path, database=dbt_database, schema=dbt_schema, schema_excludes=dbt_schema_excludes, includes=dbt_includes, excludes=dbt_excludes, ) # Load models dbt_models, aliases = dbt.read_models( include_tags=dbt_include_tags, docs_url=dbt_docs_url, ) # Instantiate Metabase interface metabase = MetabaseInterface( host=metabase_host, user=metabase_user, password=metabase_password, use_http=metabase_use_http, verify=metabase_verify, database=metabase_database, sync=metabase_sync, sync_timeout=metabase_sync_timeout, ) # Propagate models to Metabase metabase.client.export_models( database=metabase.database, models=dbt_models, aliases=aliases, ) # Parse exposures from Metabase into dbt schema yml metabase.client.extract_exposures( models=dbt_models, output_path=output_path, output_name=output_name, include_personal_collections=include_personal_collections, collection_excludes=collection_excludes, ) Code of Conduct =============== All contributors are expected to follow the `PyPA Code of Conduct`_. .. _`PyPA Code of Conduct`: https://www.pypa.io/en/latest/code-of-conduct/


نیازمندی

مقدار نام
>=5.4.1 PyYAML
>=2.26.0 requests
>=8.0.0 click
>=12.0.0 rich
>=45 setuptools
- wheel
- pylint
- mypy
- types-requests
- types-PyYAML
- black
- restructuredtext-lint


نحوه نصب


نصب پکیج whl dbt-metabase-0.9.9:

    pip install dbt-metabase-0.9.9.whl


نصب پکیج tar.gz dbt-metabase-0.9.9:

    pip install dbt-metabase-0.9.9.tar.gz