معرفی شرکت ها


dbcut-0.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Extract a lightweight subset of your relational production database for development and testing purpose.
ویژگی مقدار
سیستم عامل -
نام فایل dbcut-0.6.0
نام dbcut
نسخه کتابخانه 0.6.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Salem Harrache
ایمیل نویسنده dev@salem.harrache.info
آدرس صفحه اصلی https://github.com/itsolutionsfactory/dbcut
آدرس اینترنتی https://pypi.org/project/dbcut/
مجوز MIT license
DBcut ===== .. image:: https://img.shields.io/pypi/v/dbcut.svg :target: https://pypi.python.org/pypi/dbcut .. image:: https://travis-ci.org/itsolutionsfactory/dbcut.svg?branch=master :target: https://travis-ci.org/itsolutionsfactory/dbcut :alt: CI Status .. image:: docs/db-cute-small.png :alt: DBcut logo :align: center DBcut aims to allow the extraction of lightweight subset of relational production database for development and testing purpose. Table of Contents ----------------- - `Overview <#overview>`__ - `Usage <#usage>`__ - `Getting started <#getting-started>`__ - `Under The Hood <#under-the-hood>`__ - `Database Reflection and Loading Stategy <#database-reflection-and-loading-stategy>`__ - `SQL from YAML <#sql-from-yaml>`__ - `Extraction Graph <#extraction-graph>`__ Overview -------- Its main features are: - Extract data from large databases. - Reinject data into another base. - Target and source databases could be based on different DBMS (i.e., MySQL -> PostgreSQL/SQLite). - Extraction queries simplified in YAML. - Support nested associations. - Json and plain SQL export. - Reasonable performance. - Caching of extractions to accelerate future extractions. Usage ~~~~~ .. code:: shell Usage: dbcut [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]... Extract a lightweight subset of your production DB for development and testing purpose. Options: -c, --config PATH Configuration file --version Show the version and exit. -y, --force-yes Never prompts for user intervention -i, --interactive Prompts for user intervention. --quiet, --no-quiet Suppresses most warning and diagnostic messages. --debug Enables debug mode. --verbose Enables verbose output. -h, --help Show this message and exit. Commands: load Extract and load data to the target database. flush Remove ALL TABLES from the target database and recreate them inspect Check databases content. dumpsql Dump all SQL insert queries. dumpjson Export data to json. clear Remove all data (only) from the target database purgecache Remove all cached queries. Getting started --------------- Let's take the following database example: .. image:: docs/example-simple-db.png :alt: Simple Database We want to extract some users with all related data to our development database. First, we have to edit the extraction file ``dbcut.yaml`` as follows: .. code:: yaml # dbcut.yml databases: source_uri: mysql://foo:bar@db-host/prod destination_uri: sqlite:///small-dev-database.db queries: - from: user limit: 2 Then, we set the limit to two users, the default limit being 10. After that, we launch the extraction command with the ``load`` command: .. code:: shell $ dbcut load ---> Reflecting database schema from mysql://foo:***@db-host/prod ---> Creating new sqlite:///small-dev-database.db database ---> Creating all tables and relations on sqlite:///small-dev-database.db Query 1/1 : from: user limit: 2 backref_limit: 10 backref_depth: 5 join_depth: 5 exclude: [] include: [] ┌─ⁿ─comment ├─ⁿ─vote user┤ └─ⁿ─user_group┐ └─¹─group┐ └─¹─role┐ └─ⁿ─role_permission┐ └─¹─permission 8 tables loaded ---> Cache key : 4a468c3555074890b7c342c0a575f29d47145821 ---> Executing query ---> Fetching objects ---> Inserting 31 rows We can check the data on our new database : .. code:: shell $ ls dbcut.yml small-dev-database.db $ sqlite3 small-dev-database.db .. code:: sql sqlite> SELECT id, login FROM user; 3|jerome 4|julien .. code:: sql sqlite> SELECT * from comment; 8|comment jerome 1|3 9|comment jerome 2|3 10|comment jerome 3|3 In the following example, we are going to retrieve roles with related groups and permissions. In order to obtain the best extraction graph, we are going to use the keyword ``include``, which indicated to dbcut that we want to minimize the number of associated tables (Nested associations). .. code:: yaml queries: - from: user limit: 2 - from: role include: - group - permission It is possible to empty the content of the local database before beginning the extraction with the ``clear`` command. .. code:: shell $ dbcut -y clear load ---> Removing all data from sqlite:///small-dev-database.db database ---> Reflecting database schema from mysql://foo:***@db-host/prod?charset=utf8 ---> Creating all tables and relations on sqlite:///small-dev-database.db Query 1/2 : from: user limit: 2 backref_limit: 10 backref_depth: 5 join_depth: 5 exclude: [] include: [] ┌─ⁿ─comment ├─ⁿ─vote user┤ └─ⁿ─user_group┐ └─¹─group┐ └─¹─role┐ └─ⁿ─role_permission┐ └─¹─permission 8 tables loaded ---> Cache key : 4a468c3555074890b7c342c0a575f29d47145821 ---> Using cache (2 elements) ---> Fetching objects ---> Inserting 31 rows Query 2/2 : from: role limit: 10 backref_limit: 10 backref_depth: null join_depth: null exclude: [] include: - group - permission ┌─ⁿ─group role┤ └─ⁿ─role_permission┐ └─¹─permission 4 tables loaded ---> Cache key : 5029d84dbb2bc75a7df898dd94df93b395e91e44 ---> Executing query ---> Fetching objects ---> Inserting 22 rows As you can see in the first query, the cache was used and there was thus no interaction with the source database. This query allowed the extraction of all roles: .. code:: sql sqlite> SELECT * from role; 1|admin 2|moderator 3|user If we had not used the ``include`` keyword, all tables would have been extracted: :: ┌─ⁿ─role_permission┐ │ └─¹─permission role┤ └─ⁿ─group┐ └─ⁿ─user_group┐ │ ┌─ⁿ─comment └─¹─user┤ └─ⁿ─vote To narrow more precisely our extraction, we are now going to limit to roles that can delete a user. .. code:: yaml queries: - from: user limit: 2 - from: role include: - group - permission where: permission.codename: 'delete_user' Only the last extraction rule is relaunched with the ``--last-only`` option. .. code:: shell $ dbcut -y clear load --last-only ... ---> Cache key : ffb664a2e69c88fa48db2680daf71d30408bd207 ---> Executing query ---> Fetching objects ---> Inserting 14 rows This time, only the 'admin' role is retrieved: .. code:: sql sqlite> SELECT * from role; 1|admin Please note that the filter only applies here to role table (``from``) and not to the permission. .. code:: sql sqlite> SELECT * FROM permission"; 1|delete_comment 2|delete_vote 3|delete_user 4|create_comment 5|create_vote 6|create_user Indeed, we filter the roles based on a value from the permission table, but we do retrieved all permissions associated to this role. In the above example, it makes sense that the admin role has all permissions. Last but not least, we can also retrieve data in json or raw sql format ! .. code:: shell $ dbcut dumpjson|dumpsql .. code:: json [ { "password": "julien", "vote_collection": [ { "user_id": 4, "comment_id": 1, "id": 3, "rating": 4 }, { "user_id": 4, "comment_id": 3, "id": 6, "rating": 10 }, { "user_id": 4, "comment_id": 6, "id": 13, "rating": 10 } ], "comment_collection": [], "id": 4, "login": "julien", "user_group_collection": [ { "user_id": 4, "group": { "name": "Utilisateur", "role": { "id": 3, "role_permission_collection": [ { "permission": { "id": 4, "codename": "create_comment", "role_permission_collection": [] }, .. code:: sql PRAGMA foreign_keys = OFF; BEGIN; INSERT OR IGNORE INTO permission (id, codename) VALUES (4, 'create_comment'); INSERT OR IGNORE INTO permission (id, codename) VALUES (5, 'create_vote'); INSERT OR IGNORE INTO permission (id, codename) VALUES (1, 'delete_comment'); INSERT OR IGNORE INTO permission (id, codename) VALUES (2, 'delete_vote'); INSERT OR IGNORE INTO role (id, name) VALUES (3, 'user'); INSERT OR IGNORE INTO role (id, name) VALUES (2, 'moderator'); INSERT OR IGNORE INTO user (id, login, password) VALUES (4, 'julien', 'julien'); INSERT OR IGNORE INTO user (id, login, password) VALUES (3, 'jerome', 'jerome'); INSERT OR IGNORE INTO "group" (id, name, role_id) VALUES (3, 'Utilisateur', 3); INSERT OR IGNORE INTO "group" (id, name, role_id) VALUES (2, 'Moderateur', 2); INSERT OR IGNORE INTO comment (id, content, user_id) VALUES (8, 'comment jerome 1', 3); INSERT OR IGNORE INTO comment (id, content, user_id) VALUES (9, 'comment jerome 2', 3); INSERT OR IGNORE INTO comment (id, content, user_id) VALUES (10, 'comment jerome 3', 3); INSERT OR IGNORE INTO role_permission (id, role_id, permission_id) VALUES (12, 3, 4); INSERT OR IGNORE INTO role_permission (id, role_id, permission_id) VALUES (13, 3, 5); INSERT OR IGNORE INTO role_permission (id, role_id, permission_id) VALUES (7, 2, 4); INSERT OR IGNORE INTO role_permission (id, role_id, permission_id) VALUES (8, 2, 5); INSERT OR IGNORE INTO role_permission (id, role_id, permission_id) VALUES (10, 2, 1); INSERT OR IGNORE INTO role_permission (id, role_id, permission_id) VALUES (11, 2, 2); INSERT OR IGNORE INTO user_group (id, user_id, group_id) VALUES (4, 4, 3); INSERT OR IGNORE INTO user_group (id, user_id, group_id) VALUES (3, 3, 2); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (3, 4, 4, 1); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (6, 10, 4, 3); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (13, 10, 4, 6); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (2, 5, 3, 1); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (5, 1, 3, 2); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (7, 10, 3, 3); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (10, 6, 3, 1); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (11, 5, 3, 5); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (12, 6, 3, 6); INSERT OR IGNORE INTO vote (id, rating, user_id, comment_id) VALUES (19, 10, 3, 10); COMMIT; Under The Hood -------------- Database Reflection and Loading Stategy ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DBcut heavily uses SQLAlchemy, the SQL toolkit and Object Relational Mapper for Python. The ORM makes it possible to free ourselves from the SQL direct manipulation, but that is not all. SQLAlchemy offers a range of toolkits that enable us to programmatically build all SQL queries useful to DBcut. This include both the schema creation and all of its properties, the select, join and insert queries… no matter which DBMS is used (PostgreSQL, MySQL, SQLite, oracle etc.). One of the most important features of DBcut is that the user does not need to know or provide the source database schema to use it. First of all, DBcut will inspect the source database and retrieve all metadata. This action is what we call: *Database Reflection*. .. image:: docs/database_reflection.png :alt: Database Reflection The MetaData object store all the collection of metadata entities. DBcut will alter this MetaData object to make it compatible with most DBMS. For example, the names of indexes or foreign keys can be too long for SQLite but not for MYSQL. Sometimes, it also changes the types of the column to make it match what is expected in the target database. (``mysql.TINYINT`` became ``SMALLINT`` in SQLite and PostgreSQL) Once the MetaData object is complete, we can create the new database which is almost identical to the source database (except some compatibility adjustments) DBcut will generate and launch extraction request on the source database. The data thus obtained will be detached from the first SQLAlchemy session to be attached to the new session in the target database. This is where the SQLAlchemy magic happens: the same request will be used to extract data from the source database and to load them into the target database. Indeed, in the first case (query/fetch), it will be translated into SQL ``SELECT`` queries and in the second case, into SQL ``INSERT`` statements (load). SQL from YAML ~~~~~~~~~~~~~ One of the goals of DBcut is to allow quick writing of extraction requests. Most of the time, to write an extraction request, not much information is needed: only the main table name, hoping to retrieve the maximum number of related data as possible. The idea was to find a sufficiently concise syntax that allows us to build the most complete extraction requests with the minimum effort. The YAML came to us naturally as it is pleasant to read, easy to understand and to edit for humans. The ``dbcut.yml`` file is both used to configure DBcut and to write extraction requests. .. code:: yaml databases: source_uri: mysql://chinook:chinook@192.168.66.66/chinook destination_uri: sqlite:///chinook.db queries: - from: customer_customer To write an extraction request, only the keyword ``from`` is mandatory. However, other keywords can be added to reduce the size of data to retreive. .. code:: yaml - from: contracts_customer where: brand: 2 limit: 100 backref_limit: 500 backref_depth: 2 join_depth: 5 exclude: - django_admin_log - django_session include: [] Unlike the SQL queries, an extraction request using DBcut automatically and recursively loads all associated relations (See `Extraction Graph <#extraction-graph>`__). All these options are filtering and reducing options that prevents from slowing down the extraction process. Finally, with the scope of making the extraction requests as compact as possible, we can add default values to most of these options: .. code:: yaml default_limit: 100 default_backref_limit: 500 default_backref_depth: 2 default_join_depth: 5 global_exclude: - django_admin_log - django_session Extraction Graph ~~~~~~~~~~~~~~~~ To build an extraction request, we first build its extraction graph. An extraction graph is a subset of the complete graph of database relations. Every node represents a table, and each link represents a relation between two tables. The link direction is defined by the foreign key. To build this graph, we use the ``MetaData`` object (See `Database Reflection and Loading Stategy <#database-reflection-and-loading-stategy>`__). Let's use the following database schema: .. image:: docs/chinook_schema.png :alt: Database chinook schema The retrieved metadata during the database reflection are used to build the following complete graph of relations: .. image:: docs/chinook_uml_graph.png :alt: Complete graph of relations To build the extraction graph, we browse the complete graph starting from the table used in the ``from`` instruction. The browsing only stops if : - the link has already been browsed - the table is explicitly excluded - the maximum depth is reached For the following request: .. code:: yaml queries: - from: customer_customer The generated extraction graph is: .. image:: docs/dbcut-load-chinook.png :alt: Generated extraction graph Please note that we handle the two types of relations : one-to-many relations (noted ``1`` in the extraction graph) and many-to-many relations (noted ``n``). CHANGELOG ========= All notable changes to this project will be documented in this file. The format is based on `Keep a Changelog <http://keepachangelog.com/en/1.0.0/>`_, and this project adheres to `Semantic Versioning <http://semver.org/spec/v2.0.0.html>`_. Version 0.6.0 ------------- Released on April 13th 2021 Added ----- - Better support for tables without primary key - Load all many-to-many relationships just like one-to-many ones Version 0.5.0 ------------- Released on April 09th 2021 Added ----- - Added support of SQLAlchemy 1.4 Version 0.4.1 ------------- Released on April 01st 2021 Changed ------- - Downgrade sqlalchemy requirement to <=1.4 versions to prevent crashing Version 0.4.0 ------------- Released on March 12th 2021 Changed ------- - Ensure that generated names for SQLAlchemy relationships do not conflict with columns names - Always generate unique indexes on sqlite - Translate mysql `current_timestamp()` to `CURRENT_TIMESTAMP` on sqlite Version 0.3.1 ------------- Released on March 05th 2021 Added ~~~~~ - New experimental class Recorder that record all SQL interactions in order to replay them offline (for testing purpose) Version 0.2.0 ------------- Released on August 21st 2020 Added ~~~~~ - Always enable SQLAlchemy post_update to avoid circular dependecies - Disable all cache if `cache` config key is set to `no` - Do not globally exclude already loaded relations from the other extraction graph branches - Improved cyclical relations loading in the extraction graph Changed ~~~~~~~ - Store cache by dbcut version Removed ~~~~~~~ - Removed marshmallow serialization and prefer builtin json Version 0.1.6 ------------- Released on August 20th 2020 Changed ~~~~~~~ - `flush` purges the cache only when `--with-cache` is passed Fixed ~~~~~ - Load only transient mapper objects to force sqlalchemy to generate sql insert queries Version 0.1.5 ------------- Released on August 11th 2020 Changed ~~~~~~~ - `dumpsql` prints only create and insert sql statements Fixed ~~~~~ - Fixed dumpjson regression - Fixed query caching mechanism - Prepared all mapper objects correctly when metadata is cached - Various minor bug fixes Version 0.1.4 ------------- Released on May 07th 2020 Fixed ~~~~~ - Fixed TypeError exception - Defined a max length for indexes on TEXT column on mysql databases Version 0.1.3 ------------- Released on November 27th 2019 Changed ~~~~~~~ - `clear` cmd delete only existing table. Fixed ~~~~~ - Determistic cache key generation. First release on PyPI.


نحوه نصب


نصب پکیج whl dbcut-0.6.0:

    pip install dbcut-0.6.0.whl


نصب پکیج tar.gz dbcut-0.6.0:

    pip install dbcut-0.6.0.tar.gz