معرفی شرکت ها


daze-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Better multi-class confusion matrix plots for Scikit-Learn, incorporating per-class and overall evaluation measures.
ویژگی مقدار
سیستم عامل -
نام فایل daze-0.1.1
نام daze
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Edwin Onuonga
ایمیل نویسنده ed@eonu.net
آدرس صفحه اصلی https://github.com/eonu/daze
آدرس اینترنتی https://pypi.org/project/daze/
مجوز MIT
<h1 align="center">Daze</h1> <p align="center"> <sup><em>Better multi-class confusion matrix plots for Scikit-Learn, incorporating per-class and overall evaluation measures.</em></sup> </p> <div align="center"> <a href="https://pypi.org/project/daze"> <img src="https://img.shields.io/pypi/v/daze?style=flat-square" alt="PyPI"/> </a> <!-- Hide until tests are implemented <a href="https://pypi.org/project/daze"> <img src="https://img.shields.io/pypi/pyversions/daze?style=flat-square" alt="PyPI - Python Version"/> </a> --> <a href="https://raw.githubusercontent.com/eonu/daze/master/LICENSE"> <img src="https://img.shields.io/pypi/l/daze?style=flat-square" alt="PyPI - License"/> </a> <a href="https://daze.readthedocs.io/en/latest"> <img src="https://readthedocs.org/projects/daze/badge/?version=latest&style=flat-square" alt="Read The Docs - Documentation"> </a> <!-- Hide until tests are implemented <a href="https://travis-ci.org/eonu/daze"> <img src="https://img.shields.io/travis/eonu/daze?logo=travis&style=flat-square" alt="Travis - Build"> </a> --> </div> ## Introduction <img src="docs/_static/a,c,p,r,f1.svg" width="300px" align="right"/> The [`sklearn.metrics`](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics) module allows for the plotting of a confusion matrix from a classifier (with [`plot_confusion_matrix`](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html#sklearn.metrics.plot_confusion_matrix)), or directly from a pre-computed confusion matrix (with the internal [`ConfusionMatrixDisplay`](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html#sklearn.metrics.ConfusionMatrixDisplay) class). A confusion matrix shows the discrepancy between the true labels of a dataset and the labels predicted by a classifier. While the confusion matrix plots generated by Scikit-Learn are very informative, they omit important evaluation measures that can summarize classification performance. True positives, precision, F1 score and accuracy are example of such measures – all of which can be derived from the confusion matrix. The [`classification_report`](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html#sklearn.metrics.classification_report) function in the same module provides these measures. Daze adjusts `plot_confusion_matrix` to incorporate these evaluation measures directly in the confusion matrix plot, while still maintaining a very similar API to the original Scikit-Learn function. ## Features - Similar API to Scikit-Learn's `plot_confusion_matrix`. - All common [confusion matrix measures](https://daze.readthedocs.io/en/latest/sections/measures.html#types-of-measures):<br/> _Accuracy, TP, FP, TN, FN, TPR, FPR, TNR, FNR, Precision, Recall, F1_. - Macro & micro averaging for overall evaluation measures:<br/> _TPR, FPR, TNR, FNR, Precision, Recall, F1_. - Supports both classifiers and pre-computed confusion matrices. ## Installation ```console pip install daze ``` ## Documentation The package API remains largely the same as that of `sklearn.metrics.plot_confusion_matrix` with a few additions and changes to the function arguments: <details> <summary> <b>Click here to view the changes.</b> </summary> <p> - `estimator` (_changed_): Supports the usual fitted Scikit-Learn classifier (or [`sklearn.pipeline.Pipeline`](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html)), but also now accepts a pre-computed confusion matrix. - `X` (_changed_): If `estimator` is a classifier, then `X` are input values as usual. If `estimator` is a confusion matrix, then `X` should be set to `None`. - `y_true` (_changed_): If `estimator` is a classifier, then `y_true` are target values as usual. If `estimator` is a confusion matrix, then `y_true` should be set to `None`. - `normalize` (_added_): Whether or not to normalize the plotted confusion matrix (`True`/`False`). Note that if a confusion matrix is provided, it should always be un-normalized. - `include_measures` (_added_): Whether or not to include evaluation measures in the confusion matrix plot (`True`/`False`). - `measures` (_added_): Collection of labels for evaluation measures to display in the plot ([see documentation](https://daze.readthedocs.io/en/latest/sections/measures.html#types-of-measures)) - `measures_format` (_added_): Format string for the evaluation measure values. - `include_summary` (_added_): Whether or not to include summary measures (`True`/`False`). Note that `include_measures=False` overrides this setting. - `summary_type` (_added_): The type of averaging (`'micro'`/`'macro'`) used for summary measures. </p> </details> Documentation for the package is available on [Read The Docs](https://daze.readthedocs.io/en/latest). ## Examples ### Using a classifier object ```python # Load the 'iris' dataset from sklearn import datasets from sklearn.model_selection import train_test_split iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=1) # Train a SVM classifier on a subset of the data from sklearn.svm import SVC clf = SVC(kernel='linear').fit(X_train[:10], y_train[:10]) # Plot the confusion matrix import matplotlib.pyplot as plt from daze import plot_confusion_matrix plt.figure(figsize=(5.5, 5.5)) plot_confusion_matrix(clf, X_test, y_test, display_labels=iris.target_names, measures=...) plt.show() ``` <table> <thead> <tr> <th> <code>measures=</code> </th> <td align="center"> <code>a, c, p, r, f1</code> </td> <td align="center"> <code>a, tp, fp, fpr, tnr, p</code> </td> <td align="center"> <code>a, tn, fn, tpr, fnr, r</code> </td> </tr> </thead> <tbody> <tr> <td> <b>Plot</b> </td> <td align="center"> <img src="docs/_static/a,c,p,r,f1.svg" width="400px"/> </td> <td align="center"> <img src="docs/_static/a,tp,fp,fpr,tnr,p.svg" width="385px"/> </td> <td align="center"> <img src="docs/_static/a,tn,fn,tpr,fnr,r.svg" width="380px"/> </td> </tr> </tbody> </table> ### Using a pre-computed confusion matrix ```python # Use the previous classifier to make predictions and create a confusion matrix from sklearn.metrics import confusion_matrix y_pred = clf.predict(X_test) cm = confusion_matrix(y_test, y_pred) # Make a plot from a pre-computed confusion matrix plt.figure(figsize=(5.5, 5.5)) plot_confusion_matrix(cm, display_labels=iris.target_names) plt.show() ``` ## Licensing Daze uses [Scikit-Learn source code](https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_plot/confusion_matrix.py) for the majority of the `ConfusionMatrixDisplay` class and `plot_confusion_matrix` function re-implemetations, under the terms of the BSD-3-Clause license. <details> <summary> <b>Click here to view the redistribution license.</b> </summary> <p> > ``` > BSD 3-Clause License > > Copyright (c) 2007-2020 The scikit-learn developers. > All rights reserved. > > Redistribution and use in source and binary forms, with or without > modification, are permitted provided that the following conditions are met: > > * Redistributions of source code must retain the above copyright notice, this > list of conditions and the following disclaimer. > > * Redistributions in binary form must reproduce the above copyright notice, > this list of conditions and the following disclaimer in the documentation > and/or other materials provided with the distribution. > > * Neither the name of the copyright holder nor the names of its > contributors may be used to endorse or promote products derived from > this software without specific prior written permission. > > THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" > AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE > IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE > DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE > FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL > DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR > SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER > CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, > OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE > OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. > ``` </p> </details> --- <p align="center"> <b>Daze</b> &copy; 2021-2022, Edwin Onuonga - Released under the <a href="https://opensource.org/licenses/MIT">MIT</a> License.<br/> <em>Authored and maintained by Edwin Onuonga.</em> </p>


زبان مورد نیاز

مقدار نام
>=3.5,<3.10 Python


نحوه نصب


نصب پکیج whl daze-0.1.1:

    pip install daze-0.1.1.whl


نصب پکیج tar.gz daze-0.1.1:

    pip install daze-0.1.1.tar.gz