معرفی شرکت ها


dato-predictive-service-client-1.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Dato Predictive Service Client makes it easy to make REST API calls to Dato Predictive Services
ویژگی مقدار
سیستم عامل -
نام فایل dato-predictive-service-client-1.0.0
نام dato-predictive-service-client
نسخه کتابخانه 1.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Dato, Inc.
ایمیل نویسنده support@dato.com
آدرس صفحه اصلی https://github.com/dato-code/Dato-Predictive-Service-Client-Python
آدرس اینترنتی https://pypi.org/project/dato-predictive-service-client/
مجوز LICENSE
Dato Predictive Service Python Client ===================================== The purpose of the Dato Predictive Service Python Client library is to allow Python applications to easily query Dato Predictive Services. Installation ------------ To install Dato Predictive Service Python Client, simply: .. code-block:: bash sudo pip install dato-predictive-service-client or from source: .. code-block:: bash sudo python setup.py install Requirements ------------ - Dato Predictive Service, launched by GraphLab-Create >= 1.4 installation Usage ----- Create Client ^^^^^^^^^^^^^ To use the Dato Predictive Service Python Client, first you need to obtain the following information from a running Dato Predictive Service: - Predictive Service CNAME or DNS name (endpoint) - API key from the Predictive Service Once you have obtained the above information, simply create a new PredictiveServiceClient: .. code-block:: python from dato.deploy import PredictiveServiceClient; client = PredictiveServiceClient(endpoint = <endpoint>, api_key = <api_key>, should_verify_certificate = <True-or-False>) To enable SSL certificate verification for this Predictive Service, set the ``should_verify_certificate`` to **true**. However, if your Predictive Service is launched with a self-signed certificate or without certificate, please set ``should_verify_certificate`` to **false**. The PredictiveServiceClient can also be created by using a Predictive Service `client configuration file`_. .. code-block:: python client = PredictiveServiceClient(config_file = <path_to_file>) Query ^^^^^ To query a model that is deployed on the Predictive Service, you will need: - model name - method to query (recommend, predict, query, etc.) - data used to query against the model For example, the code below demonstrates how to query a recommender model, named ``rec``, for recommendations for user ```Jacob Smith```: .. code:: python data = {'users': ['Jacob Smith'] } result = client.query('rec', method = 'recommend', data = data) **Notes** - Different models could support different query methods (recommend, predict, query, etc.) and different syntax and format for **data**. You will need to know the supported methods and query data format before querying the model. Set timeout ^^^^^^^^^^^ To change the request timeout when querying the Predictive Service, use the following: .. code:: python # set timeout to 5 seconds. client.set_query_timeout(timeout = 5) The default timeout is 10 seconds. Results ^^^^^^^ The output to the ``query()`` function is a dictionary of the query result. If query is successful, the query result contains: - model response - uuid for this query - version of the model .. code:: python model_response = result['response'] uuid = result['uuid'] version = result['version'] ``model_response`` contains the actual model output from your query. Send feedback ^^^^^^^^^^^^^ Once you get the query result, you can submit feedback data corresponding to this query back to the Predictive Service. This feedback data can be used for evaluating your current model and training future models. To submit feedback data corresponding to a particular query, you will need the UUID of the query. The UUID can be easily obtained from the query result. .. code:: python uuid = result['uuid'] For the feedback data, you can use any attributes or value pairs that you like. Example: .. code:: python feedback_data = dict() feedback_data['num_of_clicks'] = 3 feedback_data['searched_terms'] = 'test' Now we can send this feedback data to the Predictive Service to associate this feedback with a particular query. .. code:: python client.feedback(uuid, feedback_data); More Info --------- For more information about the Dato Predictive Service, please read the `API docs`_ and `userguide`_. License ------- The Dato Predictive Service Python Client is provided under the 3-clause BSD `license`_. .. _client configuration file: https://dato.com/products/create/docs/generated/graphlab.deploy.PredictiveService.save_client_config.html .. _API docs: https://dato.com/products/create/docs/generated/graphlab.deploy.PredictiveService.html .. _userguide: https://dato.com/learn/userguide/deployment/pred-getting-started.html .. _license: https://github.com/dato-code/Dato-Predictive-Service-Client-Python/raw/master/LICENSE


نحوه نصب


نصب پکیج whl dato-predictive-service-client-1.0.0:

    pip install dato-predictive-service-client-1.0.0.whl


نصب پکیج tar.gz dato-predictive-service-client-1.0.0:

    pip install dato-predictive-service-client-1.0.0.tar.gz