معرفی شرکت ها


datastories-0.3.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Data Story Pattern Analysis for LOSD
ویژگی مقدار
سیستم عامل -
نام فایل datastories-0.3.9
نام datastories
نسخه کتابخانه 0.3.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Maciej Janowski
ایمیل نویسنده maciej.janowski@insight-centre.org
آدرس صفحه اصلی https://github.com/MaciejJanowski/DataStoryPatternLibrary
آدرس اینترنتی https://pypi.org/project/datastories/
مجوز MIT
# DataStoryPatternLibrabry Data Story Patterns Library is a repository with pattern analysis designated for Linked Open Statistical Data. Story Patterns were retrieved from literture reserach udenr general subject of "data journalism". ### Installation ```python pip install datastories ``` Requirements will be automatically installed with package ###Import/Usage ```python import datastories.analytical as patterns patterns.DataStoryPattern(sparqlendpointurl, jsonmetadata) ``` Object created allow to query SPARQL endpoint based on JSON meatadat provided. # JSON Template ```json { "cube_key" : { "title":"title of cube", "dataset_structure":"URI for cube structure", "dimensions":{ "dimension_key":{ "dimension_title":"Title of diemnsion", "dimension_url":"URI for dimension", "dimension_prefix":"URI for dimension's values" }, "dimension_key":{ "dimension_title":"Title of diemnsion", "dimension_url":"URI for dimension", "dimension_prefix":"URI for dimension's values" } }, "hierarchical_dimensions":{ "dimension_key":{ "dimension_title":"Title of diemnsion", "dimension_url":"URI for dimension", "dimension_prefix":"URI for dimension's values", "dimension_levels": { "level_key":"integer(granularity level)", "level_key":"integer(granularity level)" } } }, "measures":{ "measure_key":{ "measure_title":"Title of measure", "measure_url":"URI for measure" } } } } ``` # Patterns Description <!--ts--> * [Measurement and Counting](#MCounting) * [League Table](#LTable) * [Internal Comprison](#InternalComparison) * [Profile Outliers](#ProfileOutliers) * [Dissect Factors](#DissectFactors) * [Highlight Contrast](#HighlightContrast) * [Start Big Drill Down](#StartBigDrillDown) * [Start Small Zoom Out](#StartSmallZoomOut) * [Analysis By Category](#AnalysisByCategory) * [Explore Intersection](#ExploreIntersection) * [Narrating Change Over Time](#NarratingChangeOverTime) <!--te--> # MCounting Measurement and Counting Arithemtical operators applied to whole dataset - basic information regarding data ### Attributes ```python def MCounting(self,cube="",dims=[],meas=[],hierdims=[],count_type="raw",df=pd.DataFrame() ) ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdims |``` dict{hierdim:{"selected_level":[value]}} ``` | Hierarchical Dimesion with selected hierarchy level to take into investigation | count_type | ```String``` | Type of Count to perform | df |``` DataFrame ``` | DataFrame object, if data is already retrieved from endpoint ### Output Based on count_type value |Count_type | Description | | ------------------------ | -------------| | raw| data without any analysis performed| | sum| sum across all numeric columns| | mean| mean across all numeric columns| | min| minimum values from all numeric columns| | max| maximum values from all numeric columns| | count| amount of records| # LTable LeagueTable - sorting and extraction specific amount of records ### Attributes ```python def LTable(self,cube=[],dims=[],meas=[],hierdims=[], columns_to_order="", order_type="asc", number_of_records=20,df=pd.DataFrame()) ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdims |``` dict{hierdim:{"selected_level":[value]}} ``` | Hierarchical Dimesion with selected hierarchy level to take into investigation | columns_to_order | ```list[String]``` | Set of columns to order by | order_type | ```String``` | Type of order (asc/desc) | number_of_records | ```Integer``` | Amount of records to retrieve | df |``` DataFrame ``` | DataFrame object, if data is already retrieved from endpoint ### Output Based on sort_type value |Sort_type | Description | | ------------------------ | -------------| | asc|ascending order based on columns provided in ```columns_to_order```| | desc|descending order based on columns provided in ```columns_to_order```| # InternalComparison InternalComparison - comparison of numeric values related to textual values within one column ### Attributes ```python def InternalComparison(self,cube="",dims=[],meas=[],hierdims=[],df=pd.DataFrame(), dim_to_compare="",meas_to_compare="",comp_type="") ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdims |``` dict{hierdim:{"selected_level":[value]}} ``` | Hierarchical Dimesion with selected hierarchy level to take into investigation | df |``` DataFrame ``` | DataFrame object, if data is already retrieved from endpoint | dim_to_compare | ```String``` | Dimension, which values will be investigated | meas_to_compare | ```String``` | Measure, which numeric values related to ```dim_to_compare``` will be processed | comp_type | ```String``` | Type of comparison to perform ### Output Independent from ```comp_type``` selected, output data will have additional column with numerical column ```meas_to_compare``` processed in specific way. Available types of comparison ```comp_type``` |Comp_type | Description | | ------------------------ | -------------| | diffmax|difference with max value related to specific textual value| | diffmean|difference with arithmetic mean related to specific textual values| | diffmin|difference with minimum value related to specific textual value| # ProfileOutliers ProfileOutliers - detection of unusual values within data (anomalies) ### Attributes ```python def ProfileOutliers(self,cube=[],dims=[],meas=[],hierdims=[],df=pd.DataFrame(), displayType="outliers_only") ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdims |``` dict{hierdim:{"selected_level":[value]}} ``` | Hierarchical Dimesion with selected hierarchy level to take into investigation | df |``` DataFrame ``` | DataFrame object, if data is already retrieved from endpoint | display_type | ```String``` | What information display are bound to display (with/without anomalies) ### Output Pattern analysis using ```python scipy``` library will perform quick exploration in serach of unusual values within data. Based on ```display_type``` parameter data will be displayed with/without ddetected unusual values. Available types of displaying ```display_type``` |display_type | Description | | ------------------------ | -------------| | outliers_only|returns rows from dataset where unusual values were detected | | without_outliers|returns dataset with excluded rows where unusual values were detected | # DissectFactors DissectFactors - decomposition of data based on values in dim_to_dissect ### Attributes ```python def DissectFactors(self,cube="",dims=[],meas=[],hierdims=[],df=pd.DataFrame(),dim_to_dissect="") ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdims |``` dict{hierdim:{"selected_level":[value]}} ``` | Hierarchical Dimesion with selected hierarchy level to take into investigation | df |``` DataFrame ``` | DataFrame object, if data is already retrieved from endpoint | dim_to_dissect | ```String``` | Based on which dimension data should be decomposed ### Output As an output, data will be decomposed in a form of a dictionary, where each subset have values only related to specific value. Dictionary of subdataset will be constructed as a series of paiers where key per each susbet will values from ```dim_to_dissect``` and this key value will be data, where yhis key value was occurring. # HighlightContrast HighlightContrast - partial difference within values related to one textual column ### Attributes ```python def HighlightContrast(self,cube="",dims=[],meas=[],hierdims=[],df=pd.DataFrame(),dim_to_contrast="",contrast_type="",meas_to_contrast="") ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdims |``` dict{hierdim:{"selected_level":[value]}} ``` | Hierarchical Dimesion with selected hierarchy level to take into investigation | df |``` DataFrame ``` | DataFrame object, if data is already retrieved from endpoint | dim_to_contrast | ```String``` | Textual column, from which values will be contrasted | meas_to_contrast | ```String``` | Numerical column, which values are contrasted | contrast_type | ```String``` | Type of contrast to present ### Output Independent from ```contrast_type``` selected, output data will have additional column with numerical column ```meas_to_contrast``` processed in specific way. Available types of comparison ```contrast_type``` |Contrast_type | Description | | ------------------------ | -------------| | partofwhole| difference with max value related to specific textual value| | partofmax| difference with arithmetic mean related to specific textual values| | partofmin|difference with minimum value related to specific textual value| # StartBigDrillDown StartBigDrillDown - data retrieval from multiple hierachical levels. This pattern can be only applied to data not stored already in DataFrame ### Attributes ```python def StartBigDrillDown(self,cube="",dims=[],meas=[],hierdim_drill_down=[]) ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdim_drill_down |``` dict{hierdim:list[str]} ``` | Hierarchical dimension with list of hierarchy levels to inspect ### Output As an output, data will be retrieved in a form of a dictionary, where each dataset will be retrieved from different hierachy level. List will be provided in```hierdim_drill_down```. Hierachy levels provided by in parameter will automatically sorted in order from most general to most detailed level based on metadata provided. # StartSmallZoomOut StartSmallZoomOut - data retrieval from multiple hierachical levels. This pattern can be only applied to data not stored already in DataFrame ### Attributes ```python def StartSmallZoomOut(self,cube="",dims=[],meas=[],hierdim_zoom_out=[]) ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdim_zoom_out |``` dict{hierdim:list[str]} ``` | Hierarchical dimension with list of hierarchy levels to inspect ### Output As an output, data will be retrieved in a form of a dictionary, where each dataset will be retrieved from different hierachy level. List will be provided in```hierdim_zoom_out```. Hierachy levels provided by in parameter will automatically sorted in order from most detaile to most general level based on metadata provided. # AnalysisByCategory AnalysisByCategory - ecomposition of data based on values in dim_for_category with analysis performed on each susbet ### Attributes ```python def AnalysisByCategory(self,cube="",dims=[],meas=[],hierdims=[],df=pd.DataFrame(),dim_for_category="",meas_to_analyse="",analysis_type="min"): ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdims |``` dict{hierdim:{"selected_level":[value]}} ``` | Hierarchical Dimesion with selected hierarchy level to take into investigation | df |``` DataFrame ``` | DataFrame object, if data is already retrieved from endpoint | dim_for_category | ```String``` | Dimension, based on which input data will be categorised | meas_to_analyse | ```String``` | Measure, which will be analysed | analysis_type | ```String``` | Type of analysis to perform ### Output As an output, data will be decomposed in a form of a dictionary, where each subset have values only related to specific value. Such subset will get analysed based on ```analysis_type``` parameter Available types of analysis ```analysis_type``` |Analysis_type | Description | | ------------------------ | -------------| | min| Minimum per each category| | max| Maximum per each category| | mean|Arithmetical mean per each category| | sum|Total value from each category| # ExploreIntersection ### Attributes ```python def ExploreIntersection(self, dim_to_explore=""): ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | dim_to_explore |``` String ``` | Dimension, which existence within enpoint is going to be investigated ### Output Pattern will return series of datasets, where each will represent occurence of ```dim_to_explore``` in one cube # NarratingChangeOverTime ### Attributes ```python def NarrChangeOT(self,cube="",dims=[],meas=[],hierdims=[],df=pd.DataFrame(),meas_to_narrate="",narr_type="") ``` Parameter | Type | Description | | :------------------------ |:-------------:| :-------------| | cube |``` String ``` | Cube, which dimensions and measures will be investigated | dims |``` list[String] ``` | List of dimensions (from cube) to take into investigation | meas | ``` list[String] ``` | List of measures (from cube) to take into investigation | hierdims |``` dict{hierdim:{"selected_level":[value]}} ``` | Hierarchical Dimesion with selected hierarchy level to take into investigation | df |``` DataFrame ``` | DataFrame object, if data is already retrieved from endpoint | meas_to_narrate | ```String``` | Set of 2 measures, which change will be narrated | narr_type | ```String``` | Type of narration to perform ### Output Independent from ```narr_type``` selected, output data will have additional column with numerical values processed in specific way. Available types of analysis ```narr_type``` |Narr_type | Description | | ------------------------ | -------------| | percchange| Percentage change between first nad second property| | diffchange| Quantitive change between first and second property|


نحوه نصب


نصب پکیج whl datastories-0.3.9:

    pip install datastories-0.3.9.whl


نصب پکیج tar.gz datastories-0.3.9:

    pip install datastories-0.3.9.tar.gz