معرفی شرکت ها


datasetGPT-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Generate textual and conversational datasets with LLMs.
ویژگی مقدار
سیستم عامل -
نام فایل datasetGPT-0.0.2
نام datasetGPT
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Radostin Cholakov
ایمیل نویسنده radicho123@gmail.com
آدرس صفحه اصلی https://github.com/radi-cho/datasetGPT
آدرس اینترنتی https://pypi.org/project/datasetGPT/
مجوز -
# datasetGPT `datasetGPT` is a command-line interface and a Python library for inferencing Large Language Models to generate textual datasets. Possible use cases may include: - Constructing textual corpora to train/fine-tune detectors for content written by AI. - Collecting datasets of LLM-produced conversations for research purposes, analysis of AI performance/impact/ethics, etc. - Automating a task that a LLM can handle over big amounts of input texts. For example, using GPT-3 to summarize 1000 paragraphs with a single CLI command. - Leveraging APIs of especially big LLMs to produce diverse texts for a specific task and then fine-tune a smaller model with them. > This tool is distributed freely and doesn't imply any restrictions on the downstream use cases. > However, you should make sure to follow the **Terms of use** of the backend APIs (OpenAI, Cohere, Petals, etc.) in your specific context. ## Installation ``` pip install datasetGPT ``` Most of the generation features rely on third-party APIs. Install their respective packages: ``` pip install openai cohere petals ``` ## Usage examples ### Inference LLMs at scale ```bash export OPENAI_API_KEY="..." export COHERE_API_KEY="..." datasetGPT texts \ --prompt "If {country} was a planet in the Star Wars universe it would be called" \ --backend "openai|text-davinci-003" \ --backend "cohere|medium" \ --temperature 0.9 \ --option country Germany \ --option country France \ --max-length 50 \ --num-samples 1 \ --single-file ``` The command above should produce a dataset file with 4 texts. Each possible combination of options is used for each of the backend LLMs. Check out the [CLI reference](#cli-reference) for more details. A dataset file looks like this: ```json [ { "sample_id": 0, "backend": "openai|text-davinci-003", "max_length": 50, "temperature": 0.9, "country": "Germany", "prompt": "If Germany was a planet in the Star Wars universe it would be called", "output": " Euron. The planet would be home to a powerful and diverse species of aliens, known as the Eurons, that have evolved to a higher level of understanding and technological advancement compared to many of the other planets in the galaxy. The planet would be" }, { "sample_id": 0, "backend": "openai|text-davinci-003", "max_length": 50, "temperature": 0.9, "country": "France", "prompt": "If France was a planet in the Star Wars universe it would be called", "output": " The Empire of Liberty. It would be a peaceful, democratic planet with a strong sense of justice and equality. The planet would be home to many different species of aliens but the majority of its population would be humans. It would have a strong military and" }, { "sample_id": 0, "backend": "cohere|medium", "max_length": 50, "temperature": 0.9, "country": "Germany", "prompt": "If Germany was a planet in the Star Wars universe it would be called", "output": " the Hoth of the universe.\nAfter the Soviet invasion of Eastern Europe and the subsequent Western anti-Soviet sentiment, Germany's arms manufacturers went into hyperdrive and the country churned out guns at a frightening pace. By the early 1930" }, ... ] ``` Alternatively, you can use our [`TextsGenerator`](https://github.com/radi-cho/datasetGPT/blob/main/datasetGPT/texts.py#L27) to produce texts in Python. ### Generate conversations with the ChatGPT API ```bash export OPENAI_API_KEY="..." datasetGPT conversations \ --length 4 \ --length 5 \ --agent1 "You're a shop assistant in a pet store. Answer to customer questions politely." \ --agent2 "You're a customer in a pet store. You should behave like a human. You want to buy {n} pets. Ask questions about the pets in the store." \ --temperature 0.1 \ --temperature 0.2 \ --option n 2 \ --option n 3 \ --path dataset ``` The command above should produce a dataset directory with 16 conversations saved as JSON files. You can specify if you want all of them to be saved in a single file. But why 16? Because `num_samples` dialogues are generated for each possible combination of parameters (conversation length, LLM temperature, and custom prompt options). A dataset item looks like this: ```json { "length": 5, "temperature": 0.1, "n": "2", "agent1": "You're a shop assistant in a pet store. Answer to customer questions politely. When the whole conversation is over end with \"Goodbye\".", "agent2": "You're a customer in a pet store. You should behave like a human. You want to buy 2 pets. Ask questions about the pets in the store. When the whole conversation is over end with \"Goodbye\".", "utterances": [ [ "agent1", "Hello! How can I assist you today?" ], [ "agent2", "Hi! I'm interested in buying two pets. Can you tell me what kind of pets you have available in the store?" ], [ "agent1", "Certainly! We have a variety of pets available, including dogs, cats, birds, fish, hamsters, guinea pigs, rabbits, and reptiles. Is there a specific type of pet you're interested in?" ], [ "agent2", "I'm not sure yet. Can you tell me more about the dogs and cats you have available? What breeds do you have?" ], ... ] } ``` You can also use our [`ConversationsGenerator`](https://github.com/radi-cho/datasetGPT/blob/main/datasetGPT/conversations.py#L43) to produce texts with the `gpt-3.5-turbo` API programatically. ```python from datasetGPT import ConversationsGenerator, ConversationsGeneratorConfig, DatasetWriter dataset_writer = DatasetWriter() # single_file=True generator_config = ConversationsGeneratorConfig(agent1="You're a shop assistant in a pet store. Answer to customer questions politely.", agent2="You're a customer in a pet store. You should behave like a human. You want to buy {n} pets. Ask questions about the pets in the store.", num_samples=2, interruption="length", lengths=[4, 5], temperatures=[0.1, 0.2], options=[("n", "2"), ("n", "3")]) conversations_generator = ConversationsGenerator(generator_config) for conversation in conversations_generator: dataset_writer.save_intermediate_result(conversation) ``` ## Contributing > Still under active development. Contributions will be highly appreciated. Currently these features are under development: - [x] `datasetGPT conversations` - Make two ChatGPT agents talk with one another and record the conversation history. - [x] `datasetGPT texts` - Inference different LLMs with a given input prompt and generate multiple outputs by varying parameters. - [ ] `datasetGPT transformations` - Apply a list of transformations to a list of texts. For example, summarizing a list of texts for a {child | university student | PhD candidate} to understand. - [ ] Support more backend LLMs. To set up a local development environment: ```bash git clone https://github.com/radi-cho/datasetGPT/ cd datasetGPT pip install -e . ``` ## CLI Reference ``` datasetGPT [OPTIONS] COMMAND [ARGS]... Command line interface that generates datasets with LLMs. Options: --help Show this message and exit. Commands: conversations Produce conversations between two gpt-3.5-turbo agents... texts Inference multiple LLMs at scale. ``` ``` datasetGPT texts [OPTIONS] Inference multiple LLMs at scale. Options: -p, --prompt TEXT Input prompt. [required] -b, --backend TEXT LLM APIs to use as backends. Use "backend|model_name" notation. For example: "openai|text-davinci-003". -l, --max-length INTEGER Maximum number of tokens to generate for each prompt. -t, --temperature FLOAT Possible temperature values for the backend language model. -n, --num-samples INTEGER Number of conversations for each configuration. -o, --option <TEXT TEXT>... Values for additional options denoted in your prompts by {OPTION_NAME}. -f, --path PATH Where to save the dataset. Either a file or a directory (folder). -s, --single-file Either save the whole dataset to a single file or create multiple files. --help Show this message and exit. ``` - You can specify multiple variants for the following options: `--length`, `--temperature`, `--num-samples`, `--option`. A dataset item will be generated for each possible combination of the supplied values. - Each `--option` provided must be formatted as follows: `--option option_name "Some option value"`. - Currently supported backends: GPT-3 model variants by [OpenAI](https://openai.com/blog/openai-api), the language models by [Cohere](https://pypi.org/project/cohere/), BLOOM through the [Petals API](https://petals.ml/). ``` datasetGPT conversations [OPTIONS] Produce conversations between two gpt-3.5-turbo agents with given roles. Options: -k, --openai-api-key TEXT OpenAI API key. -a, --agent1 TEXT Agent role description. [required] -b, --agent2 TEXT Agent role description. [required] -i, --interruption [length|end_phrase] Interruption mode. -e, --end-phrase TEXT Interrupt after this phrase is outputted by one of the agents. -d, --end-agent [agent1|agent2|both] In which agent's messages to look for the end phrase. -l, --length INTEGER Maximum number of utterances for each agent. A conversation sample will be generated for each length. -t, --temperature FLOAT Possible temperature values for the backend language model. -n, --num-samples INTEGER Number of conversations for each configuration. -o, --option <TEXT TEXT>... Values for additional options denoted in your prompts by {OPTION_NAME}. -f, --path PATH Where to save the dataset. Either a file or a directory (folder). -s, --single-file Either save the whole dataset to a single file or create multiple files. --help Show this message and exit. ``` - The length parameter specifies how many utterances each agent should make. A length of 4 typically produces 8 utterances in total. - You can specify either `length` (default) or `end_phrase` as an interruption strategy. When using `end_phrase` a conversation will be interrupted once the `--end-phrase` has appeared in the messages of the `--end-agent` (could be both). In this case, the lengths provided will be treated as maximum conversation lengths.


نیازمندی

مقدار نام
>=0.0.113 langchain
>=8.1 click


نحوه نصب


نصب پکیج whl datasetGPT-0.0.2:

    pip install datasetGPT-0.0.2.whl


نصب پکیج tar.gz datasetGPT-0.0.2:

    pip install datasetGPT-0.0.2.tar.gz