معرفی شرکت ها


datamate-0.1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A data organization and compilation system.
ویژگی مقدار
سیستم عامل -
نام فایل datamate-0.1.9
نام datamate
نسخه کتابخانه 0.1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Janne Lappalainen & Mason McGill
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/datamate/
مجوز -
# Datamate Datamate is a lightweight data and configuration management framework for structuring data in machine learning projects on a hierarchical filesystem. Datamate provides a simple framework to work with heterogenous data by automating input and output of arrays and configurations to disk. It provides an interface to the system's filesystem through pointers to files and representations of the hierarchical structure. Typical usecases are: - automating pathing and orchestrating data - seamless input and output operations to a hierarchical filesystem - keep track of configurations, e.g. for preprocessing, experiments, analyses - structured preprocessing with minimal overhead code---cause configuration-based, preprocessed data can automatically be computed only once and then referenced to - for instance to skip slow computations when restarting the kernel in your `everything_in_here.ipynb` notebook - interactive prototyping in data-heterogenous applications: hierarchical file views in notebooks, pandas integration, configuration diffs, simultaneous write and read # Examples Datamate's `Directory` instances can point to (processed) data on the disk (relative to a root directory), allowing seamless I/O. E.g., to store a numpy array ```python >>> import datamate >>> datamate.set_root_dir("./data") >>> directory = datamate.Directory("experiment_01") # pointer to ./data/experiment_01 >>> directory.array = np.arange(5) # creates parent directory and writes array to h5 file >>> directory experiment_01/ - Last modified: April 04, 2022 08:24:56 └── array.h5 displaying: 1 directory, 1 files ``` To retrieve the array: ```python >>> import datamate >>> datamate.set_root_dir("./data") >>> directory = datamate.Directory("experiment_01") >>> directory.array[:] array([0, 1, 2, 3, 4]) ``` More detailed examples in `examples/01. Introduction to Datamate.ipynb`. # Installation Using pip: `pip install datamate` # Related frameworks Datamate is adapted from [artisan](https://github.com/MasonMcGill/artisan) to focus on flexibility in interactive jupyter notebooks with only optional configuration and type enforcement. Because cloud-based and relational database solutions for ML-workflows can be little beginner friendly or little flexible, Datamate is simply based on I/O of arrays and configurations on disk with pythonic syntax, and it targets interactive and notebook-based workflows. Datamate plays well with other, more advanced tools for data and experiment management. E.g. combine datamate with hydra for dynamic configuration-based workflows with command line integration. For a full-fledged cloud-based solution to track ML experiments, check out e.g. wandb. Other than that, object-relational mappers are frameworks to provide APIs to relational databases. This is particularly useful, when handling data over networks. E.g. one remote server hosts data that is accessed by many people in collaboration. ML experiment management: - [hydra](https://github.com/facebookresearch/hydra), for dynamic configuration management with automatic command line integration. - [wandb](https://github.com/wandb), cloud-based experiment running, data logging, and visualization. Relational databases, object-relational mapper: - [datajoint](https://github.com/datajoint/datajoint-python), for scientific workflow management based on relational principles. - [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy), for fully exposing SQL features and details. - [PonyORM](https://github.com/ponyorm/pony), for syntactic sugar when accessing SQL databases. # Contribution Contributions welcome!


نیازمندی

مقدار نام
- pandas
- toolz
- numpy
- typing-extensions
>=3.6.0 h5py
<8.5 ipython
- notebook
- ipywidgets
- tqdm
- matplotlib
- ruamel.yaml


نحوه نصب


نصب پکیج whl datamate-0.1.9:

    pip install datamate-0.1.9.whl


نصب پکیج tar.gz datamate-0.1.9:

    pip install datamate-0.1.9.tar.gz