معرفی شرکت ها


datamaestro-0.8.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

"Dataset management command line and API"
ویژگی مقدار
سیستم عامل -
نام فایل datamaestro-0.8.9
نام datamaestro
نسخه کتابخانه 0.8.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Benjamin Piwowarski
ایمیل نویسنده benjamin@piwowarski.fr
آدرس صفحه اصلی https://github.com/experimaestro/datamaestro
آدرس اینترنتی https://pypi.org/project/datamaestro/
مجوز GPL-3
[![PyPI version](https://badge.fury.io/py/datamaestro.svg)](https://badge.fury.io/py/datamaestro) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit) [![DOI](https://zenodo.org/badge/4573876.svg)](https://zenodo.org/badge/latestdoi/4573876) # Introduction Full documentation can be found at http://datamaestro.rtfd.io This projects aims at grouping utilities to deal with the numerous and heterogenous datasets present on the Web. It aims at being 1. a reference for available resources, listing datasets 1. a tool to automatically download and process resources (when freely available) 1. integration with the [experimaestro](http://experimaestro-python.rtfd.io/) experiment manager. 1. (planned) a tool that allows to copy data from one computer to another Each datasets is uniquely identified by a qualified name such as `com.lecun.mnist`, which is usually the inversed path to the domain name of the website associated with the dataset. The main repository only deals with very generic processing (downloading, basic pre-processing and data types). Plugins can then be registered that provide access to domain specific datasets. ## List of repositories - [Information Retrieval](https://github.com/bpiwowar/experimaestro-ir) [![PyPI version](https://badge.fury.io/py/experimaestro-ir.svg)](https://badge.fury.io/py/experimaestro-ir) - [NLP and information access related dataset](https://github.com/experimaestro/datamaestro_text) [![PyPI version](https://badge.fury.io/py/datamaestro-text.svg)](https://badge.fury.io/py/datamaestro-text) \ Natural Language Processing (e.g. Sentiment101) and Information access (e.g. TREC) datasets - [image-related dataset](https://github.com/experimaestro/datamaestro_image) [![PyPI version](https://badge.fury.io/py/datamaestro-image.svg)](https://badge.fury.io/py/datamaestro-image) Image related datasets (e.g. MNIST) - [machine learning](https://github.com/experimaestro/datamaestro_ml) [![PyPI version](https://badge.fury.io/py/datamaestro-ml.svg)](https://badge.fury.io/py/datamaestro-ml)\ Generic machine learning datasets # Command line interface (CLI) The command line interface allows to interact with the datasets. The commands are listed below, help can be found by typing `datamaestro COMMAND --help`: - `search` search dataset by name, tags and/or tasks - `download` download files (if accessible on Internet) or ask for download path otherwise - `prepare` download dataset files and outputs a JSON containing path and other dataset information - `repositories` list the available repositories - `orphans` list data directories that do no correspond to any registered dataset (and allows to clean them up) - `create-dataset` creates a dataset definition # Example (CLI) ## Retrieve and download The commmand line interface allows to download automatically the different resources. Datamaestro extensions can provide additional processing tools. ```bash $ datamaestro search tag:image [image] com.lecun.mnist $ datamaestro prepare com.lecun.mnist INFO:root:Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz into /home/bpiwowar/datamaestro/data/image/com/lecun/mnist/t10k-labels-idx1-ubyte INFO:root:Transforming file INFO:root:Created file /home/bpiwowar/datamaestro/data/image/com/lecun/mnist/t10k-labels-idx1-ubyte INFO:root:Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz into /home/bpiwowar/datamaestro/data/image/com/lecun/mnist/t10k-images-idx3-ubyte INFO:root:Transforming file INFO:root:Created file /home/bpiwowar/datamaestro/data/image/com/lecun/mnist/t10k-images-idx3-ubyte INFO:root:Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz into /home/bpiwowar/datamaestro/data/image/com/lecun/mnist/train-labels-idx1-ubyte INFO:root:Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz: 32.8kB [00:00, 92.1kB/s] INFO:root:Transforming file INFO:root:Created file /home/bpiwowar/datamaestro/data/image/com/lecun/mnist/train-labels-idx1-ubyte INFO:root:Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz into /home/bpiwowar/datamaestro/data/image/com/lecun/mnist/train-images-idx3-ubyte INFO:root:Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz: 9.92MB [00:00, 10.6MB/s] INFO:root:Transforming file INFO:root:Created file /home/bpiwowar/datamaestro/data/image/com/lecun/mnist/train-images-idx3-ubyte ...JSON... ``` The previous command also returns a JSON on standard output ```json { "train": { "images": { "path": ".../data/image/com/lecun/mnist/train_images.idx" }, "labels": { "path": ".../data/image/com/lecun/mnist/train_labels.idx" } }, "test": { "images": { "path": ".../data/image/com/lecun/mnist/test_images.idx" }, "labels": { "path": ".../data/image/com/lecun/mnist/test_labels.idx" } }, "id": "com.lecun.mnist" } ``` For those using Python, this is even better since the IDX format is supported ```python In [1]: from datamaestro import prepare_dataset In [2]: ds = prepare_dataset("com.lecun.mnist") In [3]: ds.train.images.data().dtype, ds.train.images.data().shape Out[3]: (dtype('uint8'), (60000, 28, 28)) ``` ## Python definition of datasets Each dataset (or a set of related datasets) is described in Python using a mix of declarative and imperative statements. This allows to quickly define how to download dataset using the datamaestro declarative API; the imperative part is used when creating the JSON output, and is integrated with [experimaestro](http://experimaestro.github.io/experimaestro-python). Its syntax is described in the [documentation](https://datamaestro.readthedocs.io). For MNIST, this corresponds to. ```python from datamaestro_image.data import ImageClassification, LabelledImages, Base, IDXImage from datamaestro.download.single import filedownloader from datamaestro.definitions import argument, datatasks, datatags, dataset from datamaestro.data.tensor import IDX @filedownloader("train_images.idx", "http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz") @filedownloader("train_labels.idx", "http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz") @filedownloader("test_images.idx", "http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz") @filedownloader("test_labels.idx", "http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz") @dataset( ImageClassification, url="http://yann.lecun.com/exdb/mnist/", ) def MNIST(train_images, train_labels, test_images, test_labels): """The MNIST database The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image. """ return { "train": LabelledImages( images=IDXImage(path=train_images), labels=IDX(path=train_labels) ), "test": LabelledImages( images=IDXImage(path=test_images), labels=IDX(path=test_labels) ), } ``` # 0.8.0 - Integration with other repositories: abstracting away the notion of dataset - Repository prefix - Set sub-datasets IDs automatically # 0.7.3 - Updates for new experimaestro (0.8.5) - Search types with "type:..." # 0.6.17 - Allow remote access through rpyc # 0.6.9 `version` command


نیازمندی

مقدار نام
- click
- tqdm
- urllib3
- marshmallow
- cached-property
- requests
- bitmath
>=0.9.11 experimaestro
- mkdocs
- pymdown-extensions
- mkdocs-material
- docstring-parser
- numpy
- tox


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl datamaestro-0.8.9:

    pip install datamaestro-0.8.9.whl


نصب پکیج tar.gz datamaestro-0.8.9:

    pip install datamaestro-0.8.9.tar.gz