معرفی شرکت ها


datafusion-23.0.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Build and run queries against data
ویژگی مقدار
سیستم عامل -
نام فایل datafusion-23.0.0
نام datafusion
نسخه کتابخانه 23.0.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Apache Arrow <dev@arrow.apache.org>
ایمیل نویسنده Apache Arrow <dev@arrow.apache.org>
آدرس صفحه اصلی https://github.com/apache/arrow-datafusion-python
آدرس اینترنتی https://pypi.org/project/datafusion/
مجوز Apache-2.0
<!--- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # DataFusion in Python [![Python test](https://github.com/apache/arrow-datafusion-python/actions/workflows/test.yaml/badge.svg)](https://github.com/apache/arrow-datafusion-python/actions/workflows/test.yaml) [![Python Release Build](https://github.com/apache/arrow-datafusion-python/actions/workflows/build.yml/badge.svg)](https://github.com/apache/arrow-datafusion-python/actions/workflows/build.yml) This is a Python library that binds to [Apache Arrow](https://arrow.apache.org/) in-memory query engine [DataFusion](https://github.com/apache/arrow-datafusion). DataFusion's Python bindings can be used as an end-user tool as well as providing a foundation for building new systems. ## Features - Execute queries using SQL or DataFrames against CSV, Parquet, and JSON data sources. - Queries are optimized using DataFusion's query optimizer. - Execute user-defined Python code from SQL. - Exchange data with Pandas and other DataFrame libraries that support PyArrow. - Serialize and deserialize query plans in Substrait format. - Experimental support for transpiling SQL queries to DataFrame calls with Polars, Pandas, and cuDF. ## Comparison with other projects Here is a comparison with similar projects that may help understand when DataFusion might be suitable and unsuitable for your needs: - [DuckDB](http://www.duckdb.org/) is an open source, in-process analytic database. Like DataFusion, it supports very fast execution, both from its custom file format and directly from Parquet files. Unlike DataFusion, it is written in C/C++ and it is primarily used directly by users as a serverless database and query system rather than as a library for building such database systems. - [Polars](http://pola.rs/) is one of the fastest DataFrame libraries at the time of writing. Like DataFusion, it is also written in Rust and uses the Apache Arrow memory model, but unlike DataFusion it does not provide full SQL support, nor as many extension points. ## Example Usage The following example demonstrates running a SQL query against a Parquet file using DataFusion, storing the results in a Pandas DataFrame, and then plotting a chart. The Parquet file used in this example can be downloaded from the following page: - https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page ```python from datafusion import SessionContext # Create a DataFusion context ctx = SessionContext() # Register table with context ctx.register_parquet('taxi', 'yellow_tripdata_2021-01.parquet') # Execute SQL df = ctx.sql("select passenger_count, count(*) " "from taxi " "where passenger_count is not null " "group by passenger_count " "order by passenger_count") # convert to Pandas pandas_df = df.to_pandas() # create a chart fig = pandas_df.plot(kind="bar", title="Trip Count by Number of Passengers").get_figure() fig.savefig('chart.png') ``` This produces the following chart: ![Chart](examples/chart.png) ## Configuration It is possible to configure runtime (memory and disk settings) and configuration settings when creating a context. ```python runtime = ( RuntimeConfig() .with_disk_manager_os() .with_fair_spill_pool(10000000) ) config = ( SessionConfig() .with_create_default_catalog_and_schema(True) .with_default_catalog_and_schema("foo", "bar") .with_target_partitions(8) .with_information_schema(True) .with_repartition_joins(False) .with_repartition_aggregations(False) .with_repartition_windows(False) .with_parquet_pruning(False) .set("datafusion.execution.parquet.pushdown_filters", "true") ) ctx = SessionContext(config, runtime) ``` Refer to the [API documentation](https://arrow.apache.org/datafusion-python/#api-reference) for more information. Printing the context will show the current configuration settings. ```python print(ctx) ``` ## More Examples See [examples](examples/README.md) for more information. ### Executing Queries with DataFusion - [Query a Parquet file using SQL](./examples/sql-parquet.py) - [Query a Parquet file using the DataFrame API](./examples/dataframe-parquet.py) - [Run a SQL query and store the results in a Pandas DataFrame](./examples/sql-to-pandas.py) - [Run a SQL query with a Python user-defined function (UDF)](./examples/sql-using-python-udf.py) - [Run a SQL query with a Python user-defined aggregation function (UDAF)](./examples/sql-using-python-udaf.py) - [Query PyArrow Data](./examples/query-pyarrow-data.py) - [Create dataframe](./examples/import.py) - [Export dataframe](./examples/export.py) ### Running User-Defined Python Code - [Register a Python UDF with DataFusion](./examples/python-udf.py) - [Register a Python UDAF with DataFusion](./examples/python-udaf.py) ### Substrait Support - [Serialize query plans using Substrait](./examples/substrait.py) ### Executing SQL against DataFrame Libraries (Experimental) - [Executing SQL on Polars](./examples/sql-on-polars.py) - [Executing SQL on Pandas](./examples/sql-on-pandas.py) - [Executing SQL on cuDF](./examples/sql-on-cudf.py) ## How to install (from pip) ### Pip ```bash pip install datafusion # or python -m pip install datafusion ``` ### Conda ```bash conda install -c conda-forge datafusion ``` You can verify the installation by running: ```python >>> import datafusion >>> datafusion.__version__ '0.6.0' ``` ## How to develop This assumes that you have rust and cargo installed. We use the workflow recommended by [pyo3](https://github.com/PyO3/pyo3) and [maturin](https://github.com/PyO3/maturin). The Maturin tools used in this workflow can be installed either via Conda or Pip. Both approaches should offer the same experience. Multiple approaches are only offered to appease developer preference. Bootstrapping for both Conda and Pip are as follows. Bootstrap (Conda): ```bash # fetch this repo git clone git@github.com:apache/arrow-datafusion-python.git # create the conda environment for dev conda env create -f ./conda/environments/datafusion-dev.yaml -n datafusion-dev # activate the conda environment conda activate datafusion-dev ``` Bootstrap (Pip): ```bash # fetch this repo git clone git@github.com:apache/arrow-datafusion-python.git # prepare development environment (used to build wheel / install in development) python3 -m venv venv # activate the venv source venv/bin/activate # update pip itself if necessary python -m pip install -U pip # install dependencies (for Python 3.8+) python -m pip install -r requirements-310.txt ``` The tests rely on test data in git submodules. ```bash git submodule init git submodule update ``` Whenever rust code changes (your changes or via `git pull`): ```bash # make sure you activate the venv using "source venv/bin/activate" first maturin develop python -m pytest ``` ### Running & Installing pre-commit hooks arrow-datafusion-python takes advantage of (pre-commit)[https://pre-commit.com/] to assist developers in with code linting to help reduce the number of commits that ultimately fail in CI due to linter errors. Using the pre-commit hooks is optional for the developer but certainly helpful for keep PRs clean and concise. Our pre-commit hooks can be installed by running `pre-commit install` which will install the configurations in your ARROW_DATAFUSION_PYTHON_ROOT/.github directory and run each time you perform a commit failing to perform the commit if an offending lint is found giving you the opportunity to make changes locally before pushing. The pre-commit hooks can also be ran ad-hoc without installing them by simply running `pre-commit run --all-files` ## How to update dependencies To change test dependencies, change the `requirements.in` and run ```bash # install pip-tools (this can be done only once), also consider running in venv python -m pip install pip-tools python -m piptools compile --generate-hashes -o requirements-310.txt ``` To update dependencies, run with `-U` ```bash python -m piptools compile -U --generate-hashes -o requirements-310.txt ``` More details [here](https://github.com/jazzband/pip-tools)


نیازمندی

مقدار نام
- pyarrow>=11.0.0


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl datafusion-23.0.0:

    pip install datafusion-23.0.0.whl


نصب پکیج tar.gz datafusion-23.0.0:

    pip install datafusion-23.0.0.tar.gz