معرفی شرکت ها


dataframe-column-identifier-0.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A light and useful package to find columns in a Dataframe by its values.
ویژگی مقدار
سیستم عامل -
نام فایل dataframe-column-identifier-0.0.5
نام dataframe-column-identifier
نسخه کتابخانه 0.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Danilo Silva de Oliveira
ایمیل نویسنده danilooliveira28@hotmail.com
آدرس صفحه اصلی https://github.com/ds-oliveira/dataframe_column_identifier
آدرس اینترنتی https://pypi.org/project/dataframe-column-identifier/
مجوز -
# dataframe_column_identifier ## `latest version: 0.0.5` ## What is this? A light and useful package to find columns in a Dataframe by its values. ## Installing ``` pip install dataframe-column-identifier==0.0.5 ``` ## Importing ``` from dataframe_column_identifier import DataFrameColumnIdentifier ``` ## KBest - Feature Selection Using Example ``` import pandas as pd from sklearn.feature_selection import SelectKBest, mutual_info_regression from dataframe_column_identifier import DataFrameColumnIdentifier print(X_train.shape) (1460, 282) print(X_test.shape) (1459, 282) dfci = DataFrameColumnIdentifier() kbest = SelectKBest(score_func=mutual_info_regression, k=10) kbest.fit_transform(X_train, y_train) kbest_get_support_output = kbest.get_support() print(kbest_get_support_output) array([False, True, False, True, False, True, False, True, True, False, False, True, False, False, False, False, False, False, True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]) print(dfci.select_columns_KBest(X_train, kbest_get_support_output, verbose=1)) [ '1stFlrSF', 'ExterQual_TA', 'GarageArea', 'GarageCars', 'GarageYrBlt', 'GrLivArea', 'MSSubClass', 'OverallQual', 'TotalBsmtSF', 'YearBuilt' ] X_train = dfci.transform(X_train) X_test = dfci.transform(X_test) print(X_train.shape) (1460, 10) print(X_test.shape) (1459, 10) print(X_train.head(10)) 1stFlrSF ExterQual_TA GarageArea GarageCars GarageYrBlt GrLivArea MSSubClass OverallQual TotalBsmtSF YearBuilt 0 856.0 0.0 548.0 2.0 2003.0 1710.0 60.0 7.0 856.0 2003.0 1 1262.0 1.0 460.0 2.0 1976.0 1262.0 20.0 6.0 1262.0 1976.0 2 920.0 0.0 608.0 2.0 2001.0 1786.0 60.0 7.0 920.0 2001.0 3 961.0 1.0 642.0 3.0 1998.0 1717.0 70.0 7.0 756.0 1915.0 4 1145.0 0.0 836.0 3.0 2000.0 2198.0 60.0 8.0 1145.0 2000.0 5 796.0 1.0 480.0 2.0 1993.0 1362.0 50.0 5.0 796.0 1993.0 6 1694.0 0.0 636.0 2.0 2004.0 1694.0 20.0 8.0 1686.0 2004.0 7 1107.0 1.0 484.0 2.0 1973.0 2090.0 60.0 7.0 1107.0 1973.0 8 1022.0 1.0 468.0 2.0 1931.0 1774.0 50.0 7.0 952.0 1931.0 9 1077.0 1.0 205.0 1.0 1939.0 1077.0 190.0 5.0 991.0 1939.0 print(X_test.head(10)) 1stFlrSF ExterQual_TA GarageArea GarageCars GarageYrBlt GrLivArea MSSubClass OverallQual TotalBsmtSF YearBuilt 0 896.0 1.0 730.0 1.0 1961.0 896.0 20.0 5.0 882.0 1961.0 1 1329.0 1.0 312.0 1.0 1958.0 1329.0 20.0 6.0 1329.0 1958.0 2 928.0 1.0 482.0 2.0 1997.0 1629.0 60.0 5.0 928.0 1997.0 3 926.0 1.0 470.0 2.0 1998.0 1604.0 60.0 6.0 926.0 1998.0 4 1280.0 0.0 506.0 2.0 1992.0 1280.0 120.0 8.0 1280.0 1992.0 5 763.0 1.0 440.0 2.0 1993.0 1655.0 60.0 6.0 763.0 1993.0 6 1187.0 1.0 420.0 2.0 1992.0 1187.0 20.0 6.0 1168.0 1992.0 7 789.0 1.0 393.0 2.0 1998.0 1465.0 60.0 6.0 789.0 1998.0 8 1341.0 1.0 506.0 2.0 1990.0 1341.0 20.0 7.0 1300.0 1990.0 9 882.0 1.0 525.0 2.0 1970.0 882.0 20.0 4.0 882.0 1970.0 ``` ## Feature Selection Using Example ``` import pandas as pd from sklearn.feature_selection import SelectKBest, mutual_info_regression from dataframe_column_identifier import DataFrameColumnIdentifier print(X_train.shape) (1460, 282) print(X_test.shape) (1459, 282) dfci = DataFrameColumnIdentifier() kbest = SelectKBest(score_func=mutual_info_regression, k=10) kbest_selected_features = kbest.fit_transform(X_train, y_train) print(kbest_selected_features.shape) (1460, 10) print(pd.DataFrame(kbest_selected_features).head(10)) 0 1 2 3 4 5 6 7 8 9 0 60.0 7.0 2003.0 856.0 856.0 1710.0 2003.0 2.0 548.0 0.0 1 20.0 6.0 1976.0 1262.0 1262.0 1262.0 1976.0 2.0 460.0 1.0 2 60.0 7.0 2001.0 920.0 920.0 1786.0 2001.0 2.0 608.0 0.0 3 70.0 7.0 1915.0 756.0 961.0 1717.0 1998.0 3.0 642.0 1.0 4 60.0 8.0 2000.0 1145.0 1145.0 2198.0 2000.0 3.0 836.0 0.0 5 50.0 5.0 1993.0 796.0 796.0 1362.0 1993.0 2.0 480.0 1.0 6 20.0 8.0 2004.0 1686.0 1694.0 1694.0 2004.0 2.0 636.0 0.0 7 60.0 7.0 1973.0 1107.0 1107.0 2090.0 1973.0 2.0 484.0 1.0 8 50.0 7.0 1931.0 952.0 1022.0 1774.0 1931.0 2.0 468.0 1.0 9 190.0 5.0 1939.0 991.0 1077.0 1077.0 1939.0 1.0 205.0 1.0 print(dfci.select_columns_by_values(X_train, kbest_selected_features, n_validation_rows=100, verbose=1)) [ '1stFlrSF', 'ExterQual_TA', 'GarageArea', 'GarageCars', 'GarageYrBlt', 'GrLivArea', 'MSSubClass', 'OverallQual', 'TotalBsmtSF', 'YearBuilt' ] X_train = dfci.transform(X_train) X_test = dfci.transform(X_test) print(X_train.shape) (1460, 10) print(X_test.shape) (1459, 10) print(X_train.head(10)) 1stFlrSF ExterQual_TA GarageArea GarageCars GarageYrBlt GrLivArea MSSubClass OverallQual TotalBsmtSF YearBuilt 0 856.0 0.0 548.0 2.0 2003.0 1710.0 60.0 7.0 856.0 2003.0 1 1262.0 1.0 460.0 2.0 1976.0 1262.0 20.0 6.0 1262.0 1976.0 2 920.0 0.0 608.0 2.0 2001.0 1786.0 60.0 7.0 920.0 2001.0 3 961.0 1.0 642.0 3.0 1998.0 1717.0 70.0 7.0 756.0 1915.0 4 1145.0 0.0 836.0 3.0 2000.0 2198.0 60.0 8.0 1145.0 2000.0 5 796.0 1.0 480.0 2.0 1993.0 1362.0 50.0 5.0 796.0 1993.0 6 1694.0 0.0 636.0 2.0 2004.0 1694.0 20.0 8.0 1686.0 2004.0 7 1107.0 1.0 484.0 2.0 1973.0 2090.0 60.0 7.0 1107.0 1973.0 8 1022.0 1.0 468.0 2.0 1931.0 1774.0 50.0 7.0 952.0 1931.0 9 1077.0 1.0 205.0 1.0 1939.0 1077.0 190.0 5.0 991.0 1939.0 print(X_test.head(10)) 1stFlrSF ExterQual_TA GarageArea GarageCars GarageYrBlt GrLivArea MSSubClass OverallQual TotalBsmtSF YearBuilt 0 896.0 1.0 730.0 1.0 1961.0 896.0 20.0 5.0 882.0 1961.0 1 1329.0 1.0 312.0 1.0 1958.0 1329.0 20.0 6.0 1329.0 1958.0 2 928.0 1.0 482.0 2.0 1997.0 1629.0 60.0 5.0 928.0 1997.0 3 926.0 1.0 470.0 2.0 1998.0 1604.0 60.0 6.0 926.0 1998.0 4 1280.0 0.0 506.0 2.0 1992.0 1280.0 120.0 8.0 1280.0 1992.0 5 763.0 1.0 440.0 2.0 1993.0 1655.0 60.0 6.0 763.0 1993.0 6 1187.0 1.0 420.0 2.0 1992.0 1187.0 20.0 6.0 1168.0 1992.0 7 789.0 1.0 393.0 2.0 1998.0 1465.0 60.0 6.0 789.0 1998.0 8 1341.0 1.0 506.0 2.0 1990.0 1341.0 20.0 7.0 1300.0 1990.0 9 882.0 1.0 525.0 2.0 1970.0 882.0 20.0 4.0 882.0 1970.0 ``` ## dataframe_column_identifier.DataFrameColumnIdentifier ### Creating a new instance ```dfci = DataFrameColumnIdentifier()``` ### Methods - select_columns_by_values : Returns the names of the Pandas DataFrame columns which are selected based on a matrix of values. ```dfci.select_columns_by_values(X, selected_values, n_validation_rows=100, verbose=1)``` Parameters: - X : Pandas DataFrame A DataFrame with the columns that must be found (the DataFrame must have the columns' values either). - X_columns_values : numpy matrix The values of the columns to be found. - n_validation_rows : int, optional (default=1000) The number of rows that must be equal in the columns comparison. If the informed number is greater than the number of rows in X, the numberrows in X will be used. - verbose : int, optional (default=0) It controls the verbosity when looking for the columns. - select_columns_KBest : Returns the names of the Pandas DataFrame columns which are selected based on the KBest.get_support method's output. ```dfci.select_columns_KBest(X, kbest_get_support_output, verbose=1)``` Parameters - X : Pandas DataFrame The same DataFrame used in the KBest.fit_transform method. - kbest_get_support_output : boolean array The KBest.get_support method's output. - verbose : int, optional (default=0) It controls the verbosity when looking for the columns. - transform : Returns a new Pandas DataFrame with only the columns which were selected on the select_columns_* method. ```dfci.transform(X)``` Parameters: - X : Pandas DataFrame The DataFrame to be transformed (the Pandas DataFrame must have the columns that should be found). ### Attributes - selected_columns_ : Name of the given Pandas DataFrame columns which were selected based on the given values, after the select_columns_* method execution.


نیازمندی

مقدار نام
- pandas
- numpy


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl dataframe-column-identifier-0.0.5:

    pip install dataframe-column-identifier-0.0.5.whl


نصب پکیج tar.gz dataframe-column-identifier-0.0.5:

    pip install dataframe-column-identifier-0.0.5.tar.gz