معرفی شرکت ها


dataflows-0.3.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A nifty data processing framework, based on data packages
ویژگی مقدار
سیستم عامل -
نام فایل dataflows-0.3.8
نام dataflows
نسخه کتابخانه 0.3.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Adam Kariv
ایمیل نویسنده adam.kariv@gmail.com
آدرس صفحه اصلی https://github.com/datahq/dataflows
آدرس اینترنتی https://pypi.org/project/dataflows/
مجوز MIT
# ![logo](logo-s.png) DataFlows [![Travis](https://img.shields.io/travis/datahq/dataflows/master.svg)](https://travis-ci.org/datahq/dataflows) [![Coveralls](http://img.shields.io/coveralls/datahq/dataflows.svg?branch=master)](https://coveralls.io/r/datahq/dataflows?branch=master) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/dataflows.svg) [![Gitter chat](https://badges.gitter.im/dataflows-chat/Lobby.png)](https://gitter.im/dataflows-chat/Lobby) DataFlows is a simple and intuitive way of building data processing flows. - It's built for small-to-medium-data processing - data that fits on your hard drive, but is too big to load in Excel or as-is into Python, and not big enough to require spinning up a Hadoop cluster... - It's built upon the foundation of the Frictionless Data project - which means that all data produced by these flows is easily reusable by others. - It's a pattern not a heavy-weight framework: if you already have a bunch of download and extract scripts this will be a natural fit Read more in the [Features section below](#features). ## QuickStart Install `dataflows` via `pip install.` (If you are using minimal UNIX OS, run first `sudo apt install build-essential`) Then use the command-line interface to bootstrap a basic processing script for any remote data file: ```bash # Install from PyPi $ pip install dataflows # Inspect a remote CSV file $ dataflows init https://raw.githubusercontent.com/datahq/dataflows/master/data/academy.csv Writing processing code into academy_csv.py Running academy_csv.py academy: # Year Ceremony Award Winner Name Film (string) (integer) (string) (string) (string) (string) ---- ---------- ----------- -------------------------------- ---------- ------------------------------ ------------------- 1 1927/1928 1 Actor Richard Barthelmess The Noose 2 1927/1928 1 Actor 1 Emil Jannings The Last Command 3 1927/1928 1 Actress Louise Dresser A Ship Comes In 4 1927/1928 1 Actress 1 Janet Gaynor 7th Heaven 5 1927/1928 1 Actress Gloria Swanson Sadie Thompson 6 1927/1928 1 Art Direction Rochus Gliese Sunrise 7 1927/1928 1 Art Direction 1 William Cameron Menzies The Dove; Tempest ... # dataflows create a local package of the data and a reusable processing script which you can tinker with $ tree . ├── academy_csv │   ├── academy.csv │   └── datapackage.json └── academy_csv.py 1 directory, 3 files # Resulting 'Data Package' is super easy to use in Python [adam] ~/code/budgetkey-apps/budgetkey-app-main-page/tmp (master=) $ python Python 3.6.1 (default, Mar 27 2017, 00:25:54) [GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> from datapackage import Package >>> pkg = Package('academy_csv/datapackage.json') >>> it = pkg.resources[0].iter(keyed=True) >>> next(it) {'Year': '1927/1928', 'Ceremony': 1, 'Award': 'Actor', 'Winner': None, 'Name': 'Richard Barthelmess', 'Film': 'The Noose'} >>> next(it) {'Year': '1927/1928', 'Ceremony': 1, 'Award': 'Actor', 'Winner': '1', 'Name': 'Emil Jannings', 'Film': 'The Last Command'} # You now run `academy_csv.py` to repeat the process # And obviously modify it to add data modification steps ``` ## Features * Trivial to get started and easy to scale up * Set up and run from command line in seconds ... * `dataflows init` => `flow.py` * `python flow.py` * Validate input (and esp source) quickly (non-zero length, right structure, etc.) * Supports caching data from source and even between steps * so that we can run and test quickly (retrieving is slow) * Immediate test is run: and look at output ... * Log, debug, rerun * Degrades to simple python * Conventions over configuration * Log exceptions and / or terminate * The input to each stage is a Data Package or Data Resource (not a previous task) * Data package based and compatible * Processors can be a function (or a class) processing row-by-row, resource-by-resource or a full package * A pre-existing decent contrib library of Readers (Collectors) and Processors and Writers ## Learn more Dive into the [Tutorial](TUTORIAL.md) to get a deeper glimpse into everything that `dataflows` can do. Also review this list of [Built-in Processors](PROCESSORS.md), which also includes an API reference for each one of them.


نیازمندی

مقدار نام
>=1.53.5 tabulator
>=1.5.0 datapackage
>=1.20 tableschema
>=0.0.9 kvfile
- click
- jinja2
- awesome-slugify
- inquirer
- tabulate
- tableschema-sql
- xmljson
>=3 bitstring
- python-dateutil
- openpyxl
<2 sqlalchemy
- pylama
- pylama-quotes
<2.5 pyflakes
- mock
- pytest
- pytest-cov
- coverage
- lxml
- plyvel


نحوه نصب


نصب پکیج whl dataflows-0.3.8:

    pip install dataflows-0.3.8.whl


نصب پکیج tar.gz dataflows-0.3.8:

    pip install dataflows-0.3.8.tar.gz