معرفی شرکت ها


datadings-3.4.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

datadings is a collection of tools to prepare datasets for machine learning. It's easy to use, space-efficient, and blazingly fast.
ویژگی مقدار
سیستم عامل -
نام فایل datadings-3.4.6
نام datadings
نسخه کتابخانه 3.4.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Joachim Folz
ایمیل نویسنده joachim.folz@dfki.de
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/datadings/
مجوز MIT
datadings is a collection of tools to prepare datasets for machine learning, based on two simple principles Datasets are collections of individual data samples. Each sample is a dictionary with descriptive keys. For supervised training with images samples are dictionaries like this:: {"key": unique_key, "image": imagedata, "label": label} `msgpack <http://msgpack.org>`_ is used as an efficient storage format for most supported datasets. Check out the `documentation <https://datadings.readthedocs.io>`_ for more details. Supported datasets ================== ================ ============================ Dataset Short Description ================ ============================ ADE20k_ Scene Parsing, Segmentation ANP460_ own Eye-Tracking dataset (Jalpa) CAMVID_ Motion-based Segmentation CAT2000_ MIT Saliency CIFAR_ 32x32 color image classification with 10/100 classes Cityscapes_ Segmentation, Semantic understanding of urban street scenes Coutrot1_ Eye-Tracking, Saliency FIGRIMFixation_ Eye-Tracking, Saliency ILSVRC2012_ Imagenet Large Scale Visual Recognition Challenge ImageNet21k_ A superset of ILSVRC2012 with 11 M images for 10450 classes InriaBuildings_ Inria Areal Image Labeling Dataset (Buildings), Segmentation, Remote Sensing MIT1003_ Eye-Tracking, Saliency, Learning to predict where humans look MIT300_ Eye-Tracking, Saliency Places2017_ MIT Places, Scene Recognition Places365_ MIT Places365, Scene Recognition RIT18_ High-Res Multispectral Semantic Segmentation, Remote Sensing SALICON2015_ Saliency in Context, Eye-Tracking SALICON2017_ Saliency in Context, Eye-Tracking VOC2012_ Pascal Visual Object Classes Challenge Vaihingen_ Remote Sensing, Semantic Object Classification, Segmentation YFCC100m_ Yahoo Flickr Creative Commons 100 M pics ================ ============================ .. _ADE20k: http://groups.csail.mit.edu/vision/datasets/ADE20K/ .. _ANP460: .. _CAMVID: http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/ .. _CAT2000: http://saliency.mit.edu/results_cat2000.html .. _CIFAR: https://www.cs.toronto.edu/~kriz/cifar.html .. _Cityscapes: https://www.cityscapes-dataset.com/ .. _Coutrot1: http://antoinecoutrot.magix.net/public/databases.html .. _FIGRIMFixation: http://figrim.mit.edu/index_eyetracking.html .. _ILSVRC2012: http://www.image-net.org/challenges/LSVRC/2012/ .. _ImageNet21k: https://image-net.org/download.php .. _InriaBuildings: https://project.inria.fr/aerialimagelabeling/ .. _MIT300: http://saliency.mit.edu/results_mit300.html .. _MIT1003: http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html .. _Places365: http://places2.csail.mit.edu/ .. _Places2017: http://places.csail.mit.edu/ .. _RIT18: https://github.com/rmkemker/RIT-18 .. _SALICON2015: http://salicon.net/challenge-2015/ .. _SALICON2017: http://salicon.net/challenge-2017/ .. _Vaihingen: http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html .. _VOC2012: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ .. _YFCC100m: http://yfcc100m.appspot.com/about Command line tools ================== * *datadings-write* creates new dataset files. * *datadings-cat* prints the (abbreviated) contents of a dataset file. * *datadings-shuffle* shuffles an existing dataset file. * *datadings-merge* merges two or more dataset files. * *datadings-split* splits a dataset file into two or more subsets. * *datadings-bench* runs some basic read performance benchmarks. Basic usage =========== Each dataset defines modules to read and write in the ``datadings.sets`` package. For most datasets the reading module only contains additional metadata like class labels and distributions. Let's consider the *MIT1003* dataset as an example. ``MIT1003_write`` is an executable that creates dataset files. It can be called directly or through *datadings-write*. Three files will be written: * ``MIT1003.msgpack`` contains sample data * ``MIT1003.msgpack.index`` contains index for random access * ``MIT1003.msgpack.md5`` contains MD5 hashes of both files Reading all samples sequentially, using a ``MsgpackReader`` as a context manager:: with MsgpackReader('MIT1003.msgpack') as reader: for sample in reader: [do dataset things] This standard iterator returns dictionaries. Use the ``rawiter()`` method to get samples as messagepack encoded bytes instead. Reading specific samples:: reader.seek_key('i14020903.jpeg') print(reader.next()['key']) reader.seek_index(100) print(reader.next()['key']) Reading samples as raw bytes:: raw = reader.rawnext() for raw in reader.rawiter(): print(type(raw), len(raw)) Number of samples:: print(len(reader)) You can also change the order and selection of iterated samples with augments. For example, to randomize the order of samples, wrap the reader in a ``Shuffler``:: from datadings.reader import Shuffler with Shuffler(MsgpackReader('MIT1003.msgpack')) as reader: for sample in reader: # do dataset things, but in random order! A common use case is to iterate over the whole dataset multiple times. This can be done with the ``Cycler``:: from datadings.reader import Cycler with Cycler(MsgpackReader('MIT1003.msgpack')) as reader: for sample in reader: # do dataset things, but FOREVER!


نیازمندی

مقدار نام
>=3.0.0 gdown
!=0.6.0,<2.0.0,>=0.5.0 msgpack
<1.0.0,>=0.4.2 msgpack-numpy
>=4.0.4 natsort
<2.0.0,>=1.17.0 numpy
<10.0.0,>=7.0.0 Pillow
<3.0.0,>=2.0.0 requests
<2.0.0,>=0.17.0 scipy
<2.0.0,>=1.0.2 simplebloom
<2.0.0,>=1.2.5 simplejpeg
<5.0.0,>=4.23.0 tqdm
>=18.1.1 pyzmq
>=2.4.0 GDAL


نحوه نصب


نصب پکیج whl datadings-3.4.6:

    pip install datadings-3.4.6.whl


نصب پکیج tar.gz datadings-3.4.6:

    pip install datadings-3.4.6.tar.gz