معرفی شرکت ها


dataclass-wizard-0.9.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Marshal dataclasses to/from JSON. Use field properties with initial values. Construct a dataclass schema with JSON input.
ویژگی مقدار
سیستم عامل -
نام فایل dataclass-wizard-0.9.0
نام dataclass-wizard
نسخه کتابخانه 0.9.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ritvik Nag
ایمیل نویسنده rv.kvetch@gmail.com
آدرس صفحه اصلی https://github.com/rnag/dataclass-wizard
آدرس اینترنتی https://pypi.org/project/dataclass-wizard/
مجوز Apache 2.0
================ Dataclass Wizard ================ Full documentation is available at `Read The Docs`_. (`Installation`_) .. image:: https://img.shields.io/pypi/v/dataclass-wizard.svg :target: https://pypi.org/project/dataclass-wizard .. image:: https://img.shields.io/conda/vn/conda-forge/dataclass-wizard.svg :target: https://anaconda.org/conda-forge/dataclass-wizard .. image:: https://img.shields.io/pypi/pyversions/dataclass-wizard.svg :target: https://pypi.org/project/dataclass-wizard .. image:: https://github.com/rnag/dataclass-wizard/actions/workflows/dev.yml/badge.svg :target: https://github.com/rnag/dataclass-wizard/actions/workflows/dev.yml .. image:: https://readthedocs.org/projects/dataclass-wizard/badge/?version=latest :target: https://dataclass-wizard.readthedocs.io/en/latest/?version=latest :alt: Documentation Status .. image:: https://pyup.io/repos/github/rnag/dataclass-wizard/shield.svg :target: https://pyup.io/repos/github/rnag/dataclass-wizard/ :alt: Updates This library provides a set of simple, yet elegant *wizarding* tools for interacting with the Python ``dataclasses`` module. The primary use is as a fast serialization framework that enables dataclass instances to be converted to/from JSON; this works well in particular with a *nested dataclass* model. ------------------- **Behold, the power of the Dataclass Wizard**:: >>> from __future__ import annotations >>> from dataclasses import dataclass, field >>> from dataclass_wizard import JSONWizard ... >>> @dataclass ... class MyClass(JSONWizard): ... my_str: str | None ... is_active_tuple: tuple[bool, ...] ... list_of_int: list[int] = field(default_factory=list) ... >>> string = """ ... { ... "my_str": 20, ... "ListOfInt": ["1", "2", 3], ... "isActiveTuple": ["true", false, 1] ... } ... """ ... >>> instance = MyClass.from_json(string) >>> instance MyClass(my_str='20', is_active_tuple=(True, False, True), list_of_int=[1, 2, 3]) >>> instance.to_json() '{"myStr": "20", "isActiveTuple": [true, false, true], "listOfInt": [1, 2, 3]}' >>> instance == MyClass.from_dict(instance.to_dict()) True --- .. contents:: Contents :depth: 1 :local: :backlinks: none Installation ------------ The Dataclass Wizard library is available `on PyPI`_, and can be installed with ``pip``: .. code-block:: shell $ pip install dataclass-wizard Alternatively, this library is available `on conda`_ under the `conda-forge`_ channel: .. code-block:: shell $ conda install dataclass-wizard -c conda-forge The ``dataclass-wizard`` library officially supports **Python 3.6** or higher. .. _on conda: https://anaconda.org/conda-forge/dataclass-wizard .. _conda-forge: https://conda-forge.org/ Features -------- Here are the supported features that ``dataclass-wizard`` currently provides: - *JSON/YAML (de)serialization*: marshal dataclasses to/from JSON, YAML, and Python ``dict`` objects. - *Field properties*: support for using properties with default values in dataclass instances. - *JSON to Dataclass generation*: construct a dataclass schema with a JSON file or string input. Wizard Mixins ------------- In addition to the ``JSONWizard``, here are a few extra Mixin_ classes that might prove quite convenient to use. * `JSONListWizard`_ -- Extends ``JSONWizard`` to return `Container`_ -- instead of *list* -- objects where possible. * `JSONFileWizard`_ -- Makes it easier to convert dataclass instances from/to JSON files on a local drive. * `YAMLWizard`_ -- Provides support to convert dataclass instances to/from YAML, using the default ``PyYAML`` parser. Supported Types --------------- The Dataclass Wizard library provides inherent support for standard Python collections such as ``list``, ``dict`` and ``set``, as well as most Generics from the typing module, such as ``Union`` and ``Any``. Other commonly used types such as ``Enum``, ``defaultdict``, and date and time objects such as ``datetime`` are also natively supported. For a complete list of the supported Python types, including info on the load/dump process for special types, check out the `Supported Types`_ section in the docs. Usage and Examples ------------------ Using the built-in JSON marshalling support for dataclasses: Note: The following example should work in **Python 3.7+** with the included ``__future__`` import. .. code:: python3 from __future__ import annotations # This can be removed in Python 3.10+ from dataclasses import dataclass, field from datetime import date from enum import Enum from dataclass_wizard import JSONWizard @dataclass class Data(JSONWizard): class _(JSONWizard.Meta): # Sets the target key transform to use for serialization; # defaults to `camelCase` if not specified. key_transform_with_dump = 'LISP' a_sample_bool: bool values: list[Inner] = field(default_factory=list) @dataclass class Inner: vehicle: Car | None my_dates: dict[int, date] class Car(Enum): SEDAN = 'BMW Coupe' SUV = 'Toyota 4Runner' JEEP = 'Jeep Cherokee' def main(): my_dict = { 'values': [ { 'vehicle': 'Toyota 4Runner', 'My-Dates': {'123': '2023-01-31'} }, { 'vehicle': None, 'my_dates': {} } ], 'aSampleBool': 'TRUE' } # De-serialize (a JSON string or dictionary data) into a `Data` instance. data = Data.from_dict(my_dict) print(repr(data)) # > Data(a_sample_bool=True, values=[Inner(vehicle=<Car.SUV: 'Toyota 4Runner'>, ...)]) # assert enums values are as expected assert data.values[0].vehicle is Car.SUV print(data.to_json(indent=2)) # { # "a-sample-bool": true, # "values": [ # { # "vehicle": "Toyota 4Runner", # "my-dates": { # "123": "2023-01-31" # }, # ... # True assert data == data.from_json(data.to_json()) if __name__ == '__main__': main() ... and with the ``property_wizard``, which provides support for `field properties`_ with default values in dataclasses: .. code:: python3 from __future__ import annotations # This can be removed in Python 3.10+ from dataclasses import dataclass, field from typing_extensions import Annotated from dataclass_wizard import property_wizard @dataclass class Vehicle(metaclass=property_wizard): # Note: The example below uses the default value from the `field` extra in # the `Annotated` definition; if `wheels` were annotated as `int | str`, # it would default to 0, because `int` appears as the first type argument. # # Any right-hand value assigned to `wheels` is ignored as it is simply # re-declared by the property; here it is simply omitted for brevity. wheels: Annotated[int | str, field(default=4)] # This is a shorthand version of the above; here an IDE suggests # `_wheels` as a keyword argument to the constructor method, though # it will actually be named as `wheels`. # _wheels: int | str = 4 @property def wheels(self) -> int: return self._wheels @wheels.setter def wheels(self, wheels: int | str): self._wheels = int(wheels) if __name__ == '__main__': v = Vehicle() print(v) # prints: # Vehicle(wheels=4) v = Vehicle(wheels=3) print(v) v = Vehicle('6') print(v) assert v.wheels == 6, 'The constructor should use our setter method' # Confirm that we go through our setter method v.wheels = '123' assert v.wheels == 123 ... or generate a dataclass schema for JSON input, via the `wiz-cli`_ tool: .. code:: shell $ echo '{"myFloat": "1.23", "Products": [{"created_at": "2021-11-17"}]}' | wiz gs - my_file # Contents of my_file.py from dataclasses import dataclass from datetime import date from typing import List, Union from dataclass_wizard import JSONWizard @dataclass class Data(JSONWizard): """ Data dataclass """ my_float: Union[float, str] products: List['Product'] @dataclass class Product: """ Product dataclass """ created_at: date JSON Marshalling ---------------- ``JSONSerializable`` (aliased to ``JSONWizard``) is a Mixin_ class which provides the following helper methods that are useful for serializing (and loading) a dataclass instance to/from JSON, as defined by the ``AbstractJSONWizard`` interface. .. list-table:: :widths: 10 40 35 :header-rows: 1 * - Method - Example - Description * - ``from_json`` - `item = Product.from_json(string)` - Converts a JSON string to an instance of the dataclass, or a list of the dataclass instances. * - ``from_list`` - `list_of_item = Product.from_list(l)` - Converts a Python ``list`` object to a list of the dataclass instances. * - ``from_dict`` - `item = Product.from_dict(d)` - Converts a Python ``dict`` object to an instance of the dataclass. * - ``to_dict`` - `d = item.to_dict()` - Converts the dataclass instance to a Python ``dict`` object that is JSON serializable. * - ``to_json`` - `string = item.to_json()` - Converts the dataclass instance to a JSON string representation. * - ``list_to_json`` - `string = Product.list_to_json(list_of_item)` - Converts a list of dataclass instances to a JSON string representation. Additionally, it adds a default ``__str__`` method to subclasses, which will pretty print the JSON representation of an object; this is quite useful for debugging purposes. Whenever you invoke ``print(obj)`` or ``str(obj)``, for example, it'll call this method which will format the dataclass object as a prettified JSON string. If you prefer a ``__str__`` method to not be added, you can pass in ``str=False`` when extending from the Mixin class as mentioned `here <https://dataclass-wizard.readthedocs.io/en/latest/common_use_cases/skip_the_str.html>`_. Note that the ``__repr__`` method, which is implemented by the ``dataclass`` decorator, is also available. To invoke the Python object representation of the dataclass instance, you can instead use ``repr(obj)`` or ``f'{obj!r}'``. To mark a dataclass as being JSON serializable (and de-serializable), simply sub-class from ``JSONSerializable`` as shown below. You can also extend from the aliased name ``JSONWizard``, if you prefer to use that instead. Check out a `more complete example`_ of using the ``JSONSerializable`` Mixin class. No Inheritance Needed --------------------- It is important to note that the main purpose of sub-classing from ``JSONWizard`` Mixin class is to provide helper methods like ``from_dict`` and ``to_dict``, which makes it much more convenient and easier to load or dump your data class from and to JSON. That is, it's meant to *complement* the usage of the ``dataclass`` decorator, rather than to serve as a drop-in replacement for data classes, or to provide type validation for example; there are already excellent libraries like `pydantic`_ that provide these features if so desired. However, there may be use cases where we prefer to do away with the class inheritance model introduced by the Mixin class. In the interests of convenience and also so that data classes can be used *as is*, the Dataclass Wizard library provides the helper functions ``fromlist`` and ``fromdict`` for de-serialization, and ``asdict`` for serialization. These functions also work recursively, so there is full support for nested dataclasses -- just as with the class inheritance approach. Here is an example to demonstrate the usage of these helper functions: .. note:: As of *v0.18.0*, the Meta config for the main dataclass will cascade down and be merged with the Meta config (if specified) of each nested dataclass. To disable this behavior, you can pass in ``recursive=False`` to the Meta config. .. code:: python3 from __future__ import annotations from dataclasses import dataclass, field from datetime import datetime, date from dataclass_wizard import fromdict, asdict, DumpMeta @dataclass class A: created_at: datetime list_of_b: list[B] = field(default_factory=list) @dataclass class B: my_status: int | str my_date: date | None = None source_dict = {'createdAt': '2010-06-10 15:50:00Z', 'List-Of-B': [ {'MyStatus': '200', 'my_date': '2021-12-31'} ]} # De-serialize the JSON dictionary object into an `A` instance. a = fromdict(A, source_dict) print(repr(a)) # A(created_at=datetime.datetime(2010, 6, 10, 15, 50, tzinfo=datetime.timezone.utc), # list_of_b=[B(my_status='200', my_date=datetime.date(2021, 12, 31))]) # Set an optional dump config for the main dataclass, for example one which # converts converts date and datetime objects to a unix timestamp (as an int) # # Note that `recursive=True` is the default, so this Meta config will be # merged with the Meta config (if specified) of each nested dataclass. DumpMeta(marshal_date_time_as='TIMESTAMP', key_transform='SNAKE', # Finally, apply the Meta config to the main dataclass. ).bind_to(A) # Serialize the `A` instance to a Python dict object. json_dict = asdict(a) expected_dict = {'created_at': 1276185000, 'list_of_b': [{'my_status': '200', 'my_date': 1640926800}]} print(json_dict) # Assert that we get the expected dictionary object. assert json_dict == expected_dict Custom Key Mappings ------------------- If you ever find the need to add a `custom mapping`_ of a JSON key to a dataclass field (or vice versa), the helper function ``json_field`` -- which can be considered an alias to ``dataclasses.field()`` -- is one approach that can resolve this. Example below: .. code:: python3 from dataclasses import dataclass from dataclass_wizard import JSONSerializable, json_field @dataclass class MyClass(JSONSerializable): my_str: str = json_field('myString1', all=True) # De-serialize a dictionary object with the newly mapped JSON key. d = {'myString1': 'Testing'} c = MyClass.from_dict(d) print(repr(c)) # prints: # MyClass(my_str='Testing') # Assert we get the same dictionary object when serializing the instance. assert c.to_dict() == d Extending from ``Meta`` ----------------------- Looking to change how ``date`` and ``datetime`` objects are serialized to JSON? Or prefer that field names appear in *snake case* when a dataclass instance is serialized? The inner ``Meta`` class allows easy configuration of such settings, as shown below; and as a nice bonus, IDEs should be able to assist with code completion along the way. .. note:: As of *v0.18.0*, the Meta config for the main dataclass will cascade down and be merged with the Meta config (if specified) of each nested dataclass. To disable this behavior, you can pass in ``recursive=False`` to the Meta config. .. code:: python3 from dataclasses import dataclass from datetime import date from dataclass_wizard import JSONWizard from dataclass_wizard.enums import DateTimeTo @dataclass class MyClass(JSONWizard): class _(JSONWizard.Meta): marshal_date_time_as = DateTimeTo.TIMESTAMP key_transform_with_dump = 'SNAKE' my_str: str my_date: date data = {'my_str': 'test', 'myDATE': '2010-12-30'} c = MyClass.from_dict(data) print(repr(c)) # prints: # MyClass(my_str='test', my_date=datetime.date(2010, 12, 30)) string = c.to_json() print(string) # prints: # {"my_str": "test", "my_date": 1293685200} Other Uses for ``Meta`` ~~~~~~~~~~~~~~~~~~~~~~~ Here are a few additional use cases for the inner ``Meta`` class. Note that a full list of available settings can be found in the `Meta`_ section in the docs. Debug Mode ########## Enables additional (more verbose) log output. For example, a message can be logged whenever an unknown JSON key is encountered when ``from_dict`` or ``from_json`` is called. This also results in more helpful error messages during the JSON load (de-serialization) process, such as when values are an invalid type -- i.e. they don't match the annotation for the field. This can be particularly useful for debugging purposes. .. note:: There is a minor performance impact when DEBUG mode is enabled; for that reason, I would personally advise against enabling this in a *production* environment. Handle Unknown JSON Keys ######################## The default behavior is to ignore any unknown or extraneous JSON keys that are encountered when ``from_dict`` or ``from_json`` is called, and emit a "warning" which is visible when *debug* mode is enabled (and logging is properly configured). An unknown key is one that does not have a known mapping to a dataclass field. However, we can also raise an error in such cases if desired. The below example demonstrates a use case where we want to raise an error when an unknown JSON key is encountered in the *load* (de-serialization) process. .. code:: python3 import logging from dataclasses import dataclass from dataclass_wizard import JSONWizard from dataclass_wizard.errors import UnknownJSONKey # Sets up application logging if we haven't already done so logging.basicConfig(level='INFO') @dataclass class Container(JSONWizard): class _(JSONWizard.Meta): # True to enable Debug mode for additional (more verbose) log output. debug_enabled = True # True to raise an class:`UnknownJSONKey` when an unmapped JSON key is # encountered when `from_dict` or `from_json` is called. Note that by # default, this is also recursively applied to any nested dataclasses. raise_on_unknown_json_key = True element: 'MyElement' @dataclass class MyElement: my_str: str my_float: float d = { 'element': { 'myStr': 'string', 'my_float': '1.23', # Notice how this key is not mapped to a known dataclass field! 'my_bool': 'Testing' } } # Try to de-serialize the dictionary object into a `MyClass` object. try: c = Container.from_dict(d) except UnknownJSONKey as e: print('Received error:', type(e).__name__) print('Class:', e.class_name) print('Unknown JSON key:', e.json_key) print('JSON object:', e.obj) print('Known Fields:', e.fields) else: print('Successfully de-serialized the JSON object.') print(repr(c)) Date and Time with Custom Patterns ---------------------------------- As of *v0.20.0*, date and time strings in a `custom format`_ can be de-serialized using the ``DatePattern``, ``TimePattern``, and ``DateTimePattern`` type annotations, representing patterned `date`, `time`, and `datetime` objects respectively. This will internally call ``datetime.strptime`` with the format specified in the annotation, and also use the ``fromisoformat()`` method in case the date string is in ISO-8601 format. All dates and times will continue to be serialized as ISO format strings by default. For more info, check out the `Patterned Date and Time`_ section in the docs. A brief example of the intended usage is shown below: .. code:: python3 from dataclasses import dataclass from datetime import time, datetime from typing import List # Note: in Python 3.9+, you can import this from `typing` instead from typing_extensions import Annotated from dataclass_wizard import fromdict, asdict, DatePattern, TimePattern, Pattern @dataclass class MyClass: date_field: DatePattern['%m-%Y'] dt_field: Annotated[datetime, Pattern('%m/%d/%y %H.%M.%S')] time_field1: TimePattern['%H:%M'] time_field2: Annotated[List[time], Pattern('%I:%M %p')] data = {'date_field': '12-2022', 'time_field1': '15:20', 'dt_field': '1/02/23 02.03.52', 'time_field2': ['1:20 PM', '12:30 am']} class_obj = fromdict(MyClass, data) # All annotated fields de-serialize as just date, time, or datetime, as shown. print(class_obj) # MyClass(date_field=datetime.date(2022, 12, 1), dt_field=datetime.datetime(2023, 1, 2, 2, 3, 52), # time_field1=datetime.time(15, 20), time_field2=[datetime.time(13, 20), datetime.time(0, 30)]) # All date/time fields are serialized as ISO-8601 format strings by default. print(asdict(class_obj)) # {'dateField': '2022-12-01', 'dtField': '2023-01-02T02:03:52', # 'timeField1': '15:20:00', 'timeField2': ['13:20:00', '00:30:00']} # But, the patterned date/times can still be de-serialized back after # serialization. In fact, it'll be faster than parsing the custom patterns! assert class_obj == fromdict(MyClass, asdict(class_obj)) Dataclasses in ``Union`` Types ------------------------------ The ``dataclass-wizard`` library fully supports declaring dataclass models in `Union`_ types as field annotations, such as ``list[Wizard | Archer | Barbarian]``. As of *v0.19.0*, there is added support to *auto-generate* tags for a dataclass model -- based on the class name -- as well as to specify a custom *tag key* that will be present in the JSON object, which defaults to a special ``__tag__`` key otherwise. These two options are controlled by the ``auto_assign_tags`` and ``tag_key`` attributes (respectively) in the ``Meta`` config. To illustrate a specific example, a JSON object such as ``{"oneOf": {"type": "A", ...}, ...}`` will now automatically map to a dataclass instance ``A``, provided that the ``tag_key`` is correctly set to "type", and the field ``one_of`` is annotated as a Union type in the ``A | B`` syntax. Let's start out with an example, which aims to demonstrate the simplest usage of dataclasses in ``Union`` types. For more info, check out the `Dataclasses in Union Types`_ section in the docs. .. code:: python3 from __future__ import annotations from dataclasses import dataclass from dataclass_wizard import JSONWizard @dataclass class Container(JSONWizard): class Meta(JSONWizard.Meta): tag_key = 'type' auto_assign_tags = True objects: list[A | B | C] @dataclass class A: my_int: int my_bool: bool = False @dataclass class B: my_int: int my_bool: bool = True @dataclass class C: my_str: str data = { 'objects': [ {'type': 'A', 'my_int': 42}, {'type': 'C', 'my_str': 'hello world'}, {'type': 'B', 'my_int': 123}, {'type': 'A', 'my_int': 321, 'myBool': True} ] } c = Container.from_dict(data) print(f'{c!r}') # True assert c == Container(objects=[A(my_int=42, my_bool=False), C(my_str='hello world'), B(my_int=123, my_bool=True), A(my_int=321, my_bool=True)]) print(c.to_dict()) # prints the following on a single line: # {'objects': [{'myInt': 42, 'myBool': False, 'type': 'A'}, # {'myStr': 'hello world', 'type': 'C'}, # {'myInt': 123, 'myBool': True, 'type': 'B'}, # {'myInt': 321, 'myBool': True, 'type': 'A'}]} # True assert c == c.from_json(c.to_json()) Serialization Options --------------------- The following parameters can be used to fine-tune and control how the serialization of a dataclass instance to a Python ``dict`` object or JSON string is handled. Skip Defaults ~~~~~~~~~~~~~ A common use case is skipping fields with default values - based on the ``default`` or ``default_factory`` argument to ``dataclasses.field`` - in the serialization process. The attribute ``skip_defaults`` in the inner ``Meta`` class can be enabled, to exclude such field values from serialization.The ``to_dict`` method (or the ``asdict`` helper function) can also be passed an ``skip_defaults`` argument, which should have the same result. An example of both these approaches is shown below. .. code:: python3 from collections import defaultdict from dataclasses import field, dataclass from typing import DefaultDict, List from dataclass_wizard import JSONWizard @dataclass class MyClass(JSONWizard): class _(JSONWizard.Meta): skip_defaults = True my_str: str other_str: str = 'any value' optional_str: str = None my_list: List[str] = field(default_factory=list) my_dict: DefaultDict[str, List[float]] = field( default_factory=lambda: defaultdict(list)) print('-- Load (Deserialize)') c = MyClass('abc') print(f'Instance: {c!r}') print('-- Dump (Serialize)') string = c.to_json() print(string) assert string == '{"myStr": "abc"}' print('-- Dump (with `skip_defaults=False`)') print(c.to_dict(skip_defaults=False)) Exclude Fields ~~~~~~~~~~~~~~ You can also exclude specific dataclass fields (and their values) from the serialization process. There are two approaches that can be used for this purpose: * The argument ``dump=False`` can be passed in to the ``json_key`` and ``json_field`` helper functions. Note that this is a more permanent option, as opposed to the one below. * The ``to_dict`` method (or the ``asdict`` helper function ) can be passed an ``exclude`` argument, containing a list of one or more dataclass field names to exclude from the serialization process. Additionally, here is an example to demonstrate usage of both these approaches: .. code:: python3 from dataclasses import dataclass from typing import Annotated from dataclass_wizard import JSONWizard, json_key, json_field @dataclass class MyClass(JSONWizard): my_str: str my_int: int other_str: Annotated[str, json_key('AnotherStr', dump=False)] my_bool: bool = json_field('TestBool', dump=False) data = {'MyStr': 'my string', 'myInt': 1, 'AnotherStr': 'testing 123', 'TestBool': True} print('-- From Dict') c = MyClass.from_dict(data) print(f'Instance: {c!r}') # dynamically exclude the `my_int` field from serialization additional_exclude = ('my_int',) print('-- To Dict') out_dict = c.to_dict(exclude=additional_exclude) print(out_dict) assert out_dict == {'myStr': 'my string'} Field Properties ---------------- The Python ``dataclasses`` library has some `key limitations`_ with how it currently handles properties and default values. The ``dataclass-wizard`` package natively provides support for using field properties with default values in dataclasses. The main use case here is to assign an initial value to the field property, if one is not explicitly passed in via the constructor method. To use it, simply import the ``property_wizard`` helper function, and add it as a metaclass on any dataclass where you would benefit from using field properties with default values. The metaclass also pairs well with the ``JSONSerializable`` mixin class. For more examples and important how-to's on properties with default values, refer to the `Using Field Properties`_ section in the documentation. Contributing ------------ Contributions are welcome! Open a pull request to fix a bug, or `open an issue`_ to discuss a new feature or change. Check out the `Contributing`_ section in the docs for more info. TODOs ----- All feature ideas or suggestions for future consideration, have been currently added `as milestones`_ in the project's GitHub repo. Credits ------- This package was created with Cookiecutter_ and the `rnag/cookiecutter-pypackage`_ project template. .. _Read The Docs: https://dataclass-wizard.readthedocs.io .. _Installation: https://dataclass-wizard.readthedocs.io/en/latest/installation.html .. _on PyPI: https://pypi.org/project/dataclass-wizard/ .. _Cookiecutter: https://github.com/cookiecutter/cookiecutter .. _`rnag/cookiecutter-pypackage`: https://github.com/rnag/cookiecutter-pypackage .. _`Contributing`: https://dataclass-wizard.readthedocs.io/en/latest/contributing.html .. _`open an issue`: https://github.com/rnag/dataclass-wizard/issues .. _`JSONListWizard`: https://dataclass-wizard.readthedocs.io/en/latest/common_use_cases/wizard_mixins.html#jsonlistwizard .. _`JSONFileWizard`: https://dataclass-wizard.readthedocs.io/en/latest/common_use_cases/wizard_mixins.html#jsonfilewizard .. _`YAMLWizard`: https://dataclass-wizard.readthedocs.io/en/latest/common_use_cases/wizard_mixins.html#yamlwizard .. _`Container`: https://dataclass-wizard.readthedocs.io/en/latest/dataclass_wizard.html#dataclass_wizard.Container .. _`Supported Types`: https://dataclass-wizard.readthedocs.io/en/latest/overview.html#supported-types .. _`Mixin`: https://stackoverflow.com/a/547714/10237506 .. _`Meta`: https://dataclass-wizard.readthedocs.io/en/latest/common_use_cases/meta.html .. _`pydantic`: https://pydantic-docs.helpmanual.io/ .. _`Using Field Properties`: https://dataclass-wizard.readthedocs.io/en/latest/using_field_properties.html .. _`field properties`: https://dataclass-wizard.readthedocs.io/en/latest/using_field_properties.html .. _`custom mapping`: https://dataclass-wizard.readthedocs.io/en/latest/common_use_cases/custom_key_mappings.html .. _`wiz-cli`: https://dataclass-wizard.readthedocs.io/en/latest/wiz_cli.html .. _`key limitations`: https://florimond.dev/en/posts/2018/10/reconciling-dataclasses-and-properties-in-python/ .. _`more complete example`: https://dataclass-wizard.readthedocs.io/en/latest/examples.html#a-more-complete-example .. _custom format: https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes .. _`Patterned Date and Time`: https://dataclass-wizard.readthedocs.io/en/latest/common_use_cases/patterned_date_time.html .. _Union: https://docs.python.org/3/library/typing.html#typing.Union .. _`Dataclasses in Union Types`: https://dataclass-wizard.readthedocs.io/en/latest/common_use_cases/dataclasses_in_union_types.html .. _as milestones: https://github.com/rnag/dataclass-wizard/milestones


نیازمندی

مقدار نام
>=3.7.4.2 typing-extensions
- dataclasses
==1.0.0 backports-datetime-fromisoformat
>=1.1.7 pytimeparse
>=5.3 PyYAML


نحوه نصب


نصب پکیج whl dataclass-wizard-0.9.0:

    pip install dataclass-wizard-0.9.0.whl


نصب پکیج tar.gz dataclass-wizard-0.9.0:

    pip install dataclass-wizard-0.9.0.tar.gz