# dataclass-jsonable
[](https://github.com/hit9/dataclass-jsonable/actions/workflows/ci.yml)

Simple and flexible conversions between dataclasses and jsonable dictionaries.
It maps dataclasses to jsonable dictionaries but not json strings.
## Features
* Easy to use.
* Supports common type annotations.
* Supports recursive conversions.
* Supports field-level and dataclass-level overriding.
## Installation
Requirements: Python >= 3.7
Install via `pip`:
```
pip install dataclass-jsonable
```
## Quick Example
```python
from dataclasses import dataclass
from datetime import datetime
from decimal import Decimal
from enum import IntEnum
from typing import List
from dataclass_jsonable import J
class Color(IntEnum):
BLACK = 0
BLUE = 1
RED = 2
@dataclass
class Pen(J):
color: Color
price: Decimal
produced_at: datetime
@dataclass
class Box(J):
pens: List[Pen]
box = Box(pens=[Pen(color=Color.BLUE, price=Decimal("20.1"), produced_at=datetime.now())])
# Encode to a jsonable dictionary.
d = box.json()
print(d) # {'pens': [{'color': 1, 'price': '20.1', 'produced_at': 1660023062}]}
# Construct dataclass from a jsonable dictionary.
print(Box.from_json(d))
```
APIs are only the two: `.json()` and `.from_json()`.
## Built-in Supported Types
* `bool`, `int`, `float`, `str`, `None` encoded as it is.
```python
@dataclass
class Obj(J):
a: int
b: str
c: bool
d: None
Obj(a=1, b="b", c=True, d=None).json()
# => {'a': 1, 'b': 'b', 'c': True, 'd': None}
```
* `Decimal` encoded to `str`.
```python
@dataclass
class Obj(J):
a: Decimal
Obj(a=Decimal("3.1")).json() # => {'a': '3.1'}
```
* `datetime` encoded to timestamp integer via `.timestamp()` method.
`timedelta` encoded to integer via `.total_seconds()` method.
```python
@dataclass
class Obj(J):
a: datetime
b: timedelta
Obj(a=datetime.now(), b=timedelta(minutes=1)).json()
# => {'a': 1660062019, 'b': 60}
```
* `Enum` and `IntEnum` encoded to their values via `.value` attribute.
```python
@dataclass
class Obj(J):
status: Status
Obj(status=Status.DONE).json() # => {'status': 1}
```
* `Any` is encoded according to its `type`.
```python
@dataclass
class Obj(J):
a: Any
Obj(1).json() # {'a': 1}
Obj("a").json() # {'a': 'a'}
Obj.from_json({"a": 1}) # Obj(a=1)
```
* `Optional[X]` is supported, but `Union[X, Y, ...]` is not.
```python
@dataclass
class Obj(J):
a: Optional[int] = None
Obj(a=1).json() # => {'a': 1}
```
* `List[X]`, `Tuple[X]`, `Set[X]` are all encoded to `list`.
```python
@dataclass
class Obj(J):
a: List[int]
b: Set[int]
c: Tuple[int, str]
d: Tuple[int, ...]
Obj(a=[1], b={2, 3}, c=(4, "5"), d=(7, 8, 9)).json())
# => {'a': [1], 'b': [2, 3], 'c': [4, '5'], 'd': [7, 8, 9]}
Obj.from_json({"a": [1], "b": [2, 3], "c": [4, "5"], "d": [7, 8, 9]}))
# => Obj(a=[1], b={2, 3}, c=(4, '5'), d=(7, 8, 9))
```
* `Dict[str, X]` encoded to `dict`.
```python
@dataclass
class Obj(J):
a: Dict[str, int]
Obj(a={"x": 1}).json() # => {'a': {'x': 1}}
Obj.from_json({"a": {"x": 1}}) # => Obj(a={'x': 1})
```
* Nested or recursively `JSONAble` (or `J`) dataclasses.
```python
@dataclass
class Elem(J):
k: str
@dataclass
class Obj(J):
a: List[Elem]
Obj([Elem("v")]).json() # => {'a': [{'k': 'v'}]}
Obj.from_json({"a": [{"k": "v"}]}) # Obj(a=[Elem(k='v')])
```
* Postponed annotations (the `ForwardRef` in [PEP 563](https://www.python.org/dev/peps/pep-0563/)).
```python
@dataclass
class Node(J):
name: str
left: Optional["Node"] = None
right: Optional["Node"] = None
root = Node("root", left=Node("left"), right=Node("right"))
root.json()
# {'name': 'root', 'left': {'name': 'left', 'left': None, 'right': None}, 'right': {'name': 'right', 'left': None, 'right': None}}
```
If these built-in default conversion behaviors do not meet your needs,
or your type is not on the list,
you can use [json_options](#customization--overriding-examples) introduced below to customize it.
## Customization / Overriding Examples
We can override the default conversion behaviors with `json_options`,
which uses the dataclass field's metadata for field-level customization purpose,
and the namespace is `j`.
The following pseudo code gives the pattern:
```python
from dataclasses import field
from dataclass_jsonable import json_options
@dataclass
class Struct(J):
attr: T = field(metadata={"j": json_options(**kwds)})
```
An example list about `json_options`:
* Specific a custom dictionary key over the default field's name:
```python
@dataclass
class Person(J):
attr: str = field(metadata={"j": json_options(name="new_attr")})
Person(attr="value").json() # => {"new_attr": "value"}
```
And more, we can use a function to specific a custom dictionary key.
This may be convenient to work with class-level `__default_json_options__` attribute (check it below).
```python
@dataclass
class Obj(J):
simple_value: int = field(metadata={"j": json_options(name_converter=to_camel_case)})
Obj(simple_value=1).json() # => {"simpleValue": 1}
```
And we may specific a custom field name converter when converts dictionary to dataclass:
```python
@dataclass
def Person(J):
name: str = field(
metadata={
"j": json_options(
name_converter=lambda x: x.capitalize(),
name_inverter=lambda x: "nickname",
)
}
)
```
As the `Person` defined above, it will convert to dictionary like `{"Name": "Jack"}` and can be loaded from `{"nickname": "Jack"}`.
* Omit a field if its value is empty:
```python
@dataclass
class Book(J):
name: str = field(metadata={"j": json_options(omitempty=True)})
Book(name="").json() # => {}
```
Further, we can specify what is 'empty' via option `omitempty_tester`:
```python
@dataclass
class Book(J):
attr: Optional[str] = field(
default=None,
metadata={
# By default, we test `empty` using `not x`.
"j": json_options(omitempty=True, omitempty_tester=lambda x: x is None)
},
)
Book(attr="").json() # => {'attr': ''}
Book(attr=None).json() # => {}
```
* Always skip a field. So we can stop some "private" fields from exporting:
```python
@dataclass
class Obj(J):
attr: str = field(metadata={"j": json_options(skip=True)})
Obj(attr="private").json() # => {}
```
* dataclasses's `field` allows us to pass a `default` or `default_factory` argument to
set a default value:
```python
@dataclass
class Obj(J):
attr: List[str] = field(default_factory=list, metadata={"j": json_options(**kwds)})
```
There's also an option `default_before_decoding` in dataclass-jsonable,
which specifics a default value before decoding if the key is missing in the dictionary.
Sometimes this way is more concise:
```python
@dataclass
class Obj(J):
updated_at: datetime = field(metadata={"j": json_options(default_before_decoding=0)})
Obj.from_json({}) # => Obj(updated_at=datetime.datetime(1970, 1, 1, 8, 0))
```
dataclass-jsonable also introduces a class-level similar option `__default_factory__`.
If a field has no `default` or `default_factory` declared, and has no `default_before_decoding` option used,
this function will generate a default value according to its type, to prevent a
"missing positional arguments" TypeError from rasing.
```python
from dataclass_jsonable import J, zero
@dataclass
class Obj(J):
__default_factory__ = zero
n: int
s: str
k: List[str]
Obj.from_json({}) # => Obj(n=0, s='', k=[])
```
* Override the default encoders and decoders.
This way, you have complete control over how to encode and decode at field level.
```python
@dataclass
class Obj(J):
elems: List[str] = field(
metadata={
"j": json_options(
encoder=lambda x: ",".join(x),
decoder=lambda x: x.split(","),
)
}
)
Obj(elems=["a", "b", "c"]).json() # => {'elems': 'a,b,c'}
Obj.from_json({"elems": "a,b,c"}) # => Obj(elems=['a', 'b', 'c'])
```
The following code snippet about `datetime` is a very common example,
you might want ISO format datetime conversion over timestamp integers.
```python
@dataclass
class Record(J):
created_at: datetime = field(
default_factory=datetime.now,
metadata={
"j": json_options(
encoder=datetime.isoformat,
decoder=datetime.fromisoformat,
)
},
)
Record().json() # => {'created_at': '2022-08-09T23:23:02.543007'}
```
* For some very narrow scenarios, we may need to execute a hook function before decoding,
for example, the data to be decoded is a serialized json string,
and but we still want to use the built-in decoder functions instead of making a new decoder.
```python
import json
@dataclass
class Obj(J):
data: Dict[str, Any] = field(metadata={"j": json_options(before_decoder=json.loads)})
Obj.from_json({"data": '{"k": "v"}'})
# => Obj(data={'k': 'v'})
```
* Customize default behaviors at the class level.
If an option is not explicitly set at the field level,
the `__default_json_options__` provided at the class level will be attempted.
````python
@dataclass
class Obj(J):
__default_json_options__ = json_options(omitempty=True)
a: Optional[int] = None
b: Optional[str] = None
Obj(b="b").json() # => {'b': 'b'}
````
```python
@dataclass
class Obj(J):
__default_json_options__ = json_options(name_converter=to_camel_case)
status_code: int
simple_value: str
Obj2(status_code=1, simple_value="simple").json()
# => {"statusCode": 1, "simpleValue": "simple"}
```
## Debuging
It provides a method `obj._get_origin_json()`,
it returns the original json dictionary which constructs instance `obj` via `from_json()`.
```python
d = {"a": 1}
obj = Obj.from_json(d)
obj._get_origin_json()
# => {"a": 1}
```
## License
BSD.