# Dataclass Array
[](https://github.com/google-research/visu3d/actions/workflows/pytest_and_autopublish.yml)
[](https://badge.fury.io/py/dataclass_array)
`DataclassArray` are dataclasses which behave like numpy-like arrays (can be
batched, reshaped, sliced,...), compatible with Jax, TensorFlow, and numpy (with
torch support planned).
This reduce boilerplate and improve readability. See the
[motivating examples](#motivating-examples) section bellow.
To view an example of dataclass arrays used in practice, see
[visu3d](https://github.com/google-research/visu3d).
## Documentation
### Definition
To create a `dca.DataclassArray`, take a frozen dataclass and:
* Inherit from `dca.DataclassArray`
* Annotate the fields with `dataclass_array.typing` to specify the inner shape
and dtype of the array (see below for static or nested dataclass fields).
The array types are an alias from
[`etils.array_types`](https://github.com/google/etils/blob/main/etils/array_types/README.md).
```python
import dataclass_array as dca
from dataclass_array.typing import FloatArray
class Ray(dca.DataclassArray):
pos: FloatArray['*batch_shape 3']
dir: FloatArray['*batch_shape 3']
```
### Usage
Afterwards, the dataclass can be used as a numpy array:
```python
ray = Ray(pos=jnp.zeros((3, 3)), dir=jnp.eye(3))
ray.shape == (3,) # 3 rays batched together
ray.pos.shape == (3, 3) # Individual fields still available
# Numpy slicing/indexing/masking
ray = ray[..., 1:2]
ray = ray[norm(ray.dir) > 1e-7]
# Shape transformation
ray = ray.reshape((1, 3))
ray = ray.reshape('h w -> w h') # Native einops support
ray = ray.flatten()
# Stack multiple dataclass arrays together
ray = dca.stack([ray0, ray1, ...])
# Supports TF, Jax, Numpy (torch planned) and can be easily converted
ray = ray.as_jax() # as_np(), as_tf()
ray.xnp == jax.numpy # `numpy`, `jax.numpy`, `tf.experimental.numpy`
# Compatibility `with jax.tree_util`, `jax.vmap`,..
ray = jax.tree_util.tree_map(lambda x: x+1, ray)
```
A `DataclassArray` has 2 types of fields:
* Array fields: Fields batched like numpy arrays, with reshape, slicing,...
Can be `xnp.ndarray` or nested `dca.DataclassArray`.
* Static fields: Other non-numpy field. Are not modified by reshaping,...
Static fields are also ignored in `jax.tree_map`.
```python
class MyArray(dca.DataclassArray):
# Array fields
a: FloatArray['*batch_shape 3'] # Defined by `etils.array_types`
b: FloatArray['*batch_shape _ _'] # Dynamic shape
c: Ray # Nested DataclassArray (equivalent to `Ray['*batch_shape']`)
d: Ray['*batch_shape 6']
# Array fields explicitly defined
e: Any = dca.field(shape=(3,), dtype=np.float32)
f: Any = dca.field(shape=(None, None), dtype=np.float32) # Dynamic shape
g: Ray = dca.field(shape=(3,), dtype=Ray) # Nested DataclassArray
# Static field (everything not defined as above)
static0: float
static1: np.array
```
### Vectorization
`@dca.vectorize_method` allow your dataclass method to automatically support
batching:
1. Implement method as if `self.shape == ()`
2. Decorate the method with `dca.vectorize_method`
```python
class Camera(dca.DataclassArray):
K: FloatArray['*batch_shape 4 4']
resolution = tuple[int, int]
@dca.vectorize_method
def rays(self) -> Ray:
# Inside `@dca.vectorize_method` shape is always guarantee to be `()`
assert self.shape == ()
assert self.K.shape == (4, 4)
# Compute the ray as if there was only a single camera
return Ray(pos=..., dir=...)
```
Afterward, we can generate rays for multiple camera batched together:
```python
cams = Camera(K=K) # K.shape == (num_cams, 4, 4)
rays = cams.rays() # Generate the rays for all the cameras
cams.shape == (num_cams,)
rays.shape == (num_cams, h, w)
```
`@dca.vectorize_method` is similar to `jax.vmap` but:
* Only work on `dca.DataclassArray` methods
* Instead of vectorizing a single axis, `@dca.vectorize_method` will vectorize
over `*self.shape` (not just `self.shape[0]`). This is like if `vmap` was
applied to `self.flatten()`
* When multiple arguments, axis with dimension `1` are broadcasted.
For example, with `__matmul__(self, x: T) -> T`:
```python
() @ (*x,) -> (*x,)
(b,) @ (b, *x) -> (b, *x)
(b,) @ (1, *x) -> (b, *x)
(1,) @ (b, *x) -> (b, *x)
(b, h, w) @ (b, h, w, *x) -> (b, h, w, *x)
(1, h, w) @ (b, 1, 1, *x) -> (b, h, w, *x)
(a, *x) @ (b, *x) -> Error: Incompatible a != b
```
To test on Colab, see the `visu3d` dataclass
[Colab tutorial](https://colab.research.google.com/github/google-research/visu3d/blob/main/docs/dataclass.ipynb).
## Motivating examples
`dca.DataclassArray` improve readability by simplifying common patterns:
* Reshaping all fields of a dataclass:
Before (`rays` is simple `dataclass`):
```python
num_rays = math.prod(rays.origins.shape[:-1])
rays = jax.tree_map(lambda r: r.reshape((num_rays, -1)), rays)
```
After (`rays` is `DataclassArray`):
```python
rays = rays.flatten() # (b, h, w) -> (b*h*w,)
```
* Rendering a video:
Before (`cams: list[Camera]`):
```python
img = cams[0].render(scene)
imgs = np.stack([cam.render(scene) for cam in cams[::2]])
imgs = np.stack([cam.render(scene) for cam in cams])
```
After (`cams: Camera` with `cams.shape == (num_cams,)`):
```python
img = cams[0].render(scene) # Render only the first camera (to debug)
imgs = cams[::2].render(scene) # Render 1/2 frames (for quicker iteration)
imgs = cams.render(scene) # Render all cameras at once
```
## Installation
```sh
pip install dataclass_array
```
*This is not an official Google product*