معرفی شرکت ها


databag-1.5.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Put your data in a bag and get it back out again
ویژگی مقدار
سیستم عامل -
نام فایل databag-1.5.0
نام databag
نسخه کتابخانه 1.5.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jeremy Kelley
ایمیل نویسنده jeremy@33ad.org
آدرس صفحه اصلی https://github.com/nod/databag
آدرس اینترنتی https://pypi.org/project/databag/
مجوز -
<img src="https://github.com/nod/databag/raw/master/misc/dbag.png" /> # PUT YOUR DATA IN A BAG Pretty simple library for splatting stuff to disk and getting it back out with minimal fuss. It's sort of a long term file based dictionary with enhanced range type filtering. **updated for python3** ## wait... Yep - it's a nosql type, document oriented database wrapper on top of sqlite3. ## features - Easy to use and quite efficient at accessing relatively large number of items (not talking big data here, but a couple of thousand items works well) - Requires no other libs, everything is python batteries included. - Built on top of sqlite3 so it's fast and stable (which is included in Python stdlib) - Easy to use - just create one and use it like a dictionary. Most dict methods supported. Also can add to it like a set by not specifying a key. One will be created on the fly. - Pretty well tested - Ideal for running on small vm instances. Doesn't require any other daemon to provide data access - Core code is about 400 lines - very easy to understand. - Automatically compresses data with bz2 in cases that benefit from it - offers versioned records if you so choose - You can always query the data with native sqlite3 libs from other languages if you need to. It's just strings in the database. - Since the underlying datafile is sqlite3, multiple processes can work with the same file (multiple read, write locks, etc) - Every object gets a ts object attached to it for convenience when it's saved. This is accessed via `bag.when('key')` ## versioning Simplified versioning is provided. Just create your DataBag like::: ```Python console >>> dbag = DataBag(versioned=True, fpath='/tmp/some.db') ``` and then you can do things like... ```Python console >>> dbag['blah'] = 'blip' >>> dbag['blah'] = 'new blip' >>> dbag['blah'] = 'newer blip' >>> dbag.get('blah', version=-2) u'blip' >>> dbag.get('blah', version=-1) u'new blip' >>> dbag.get('blah') u'newer blip' >>> dbag['blah'] u'newer blip' ``` The default is to keep 10 versions but that can be set with the `history` parameter when initializing your bag. If you don't specify an `fpath` argument, the database is only created in memory. By specifying `fpath`, you specify the location of the file on the filesystem. A `bag.get(...)` method works much like a dictionary's `.get(...)` but with an additional keyword argument of `version` that indicates how far back to go. ## examples ```Python console >>> from databag import DataBag >>> bag = DataBag() # will store sqlite db in memory >>> bag['xyz'] = 'some string' # will save in the db >>> s = bag['xyz'] # retrieves from db >>> s 'some string' >>> 'xyz' in bag # True True >>> bag['abc'] = {'x':22, 'y':{'a':'blah'}} # works >>> bag['abc'] {u'y': {u'a': u'blah'}, u'x': 22} >>> [k for k in bag] ['abc', 'xyz'] >>> bag.when('xyz') datetime.datetime(2011, 12, 31, 2, 45, 47, 187621) >>> del bag['xyz'] >>> 'xyz' in bag False >>> meh = DataBag(bag='other') # set name of storage table ``` ## DictBag example ```Python console >>> from databag import DictBag, Q >>> d = DictBag() >>> d.ensure_index(('name', 'age')) >>> person1 = {'name':'joe', 'age':23} >>> person2 = {'name':'sue', 'age':44} >>> d.add(person1) 'fachVqv6RxsmCXAZgJMJ5p' >>> d.add(person2) 'fpC7cAtx2ZQLadprQR7aa6' >>> d.find(Q('age')>40).next() (u'fpC7cAtx2ZQLadprQR7aa6', {u'age': 44, u'name': u'sue'}) >>> age = Q('age') >>> [p for p in d.find(20 < age < 50) ] [(u'fachVqv6RxsmCXAZgJMJ5p', {u'age': 23, u'name': u'joe'}), (u'fpC7cAtx2ZQLadprQR7aa6', {u'age': 44, u'name': u'sue'})] ``` There's also some syntactic sugar that lets you also use a Q object directly if the key name is a proper symbol name in python. ``` >>> [p for p in d.find(20 < Q.age < 50) ] [(u'fachVqv6RxsmCXAZgJMJ5p', {u'age': 23, u'name': u'joe'}), (u'fpC7cAtx2ZQLadprQR7aa6', {u'age': 44, u'name': u'sue'})] >>> ``` ## Mongo Style Queries ```Python console >>> d.find({'age':23}) >>> d.find({'age':{"$gt":20}} ) ``` ## limitations - although a lot of the basic data types in python are supported for the values (lists, dictionaries, tuples, ints, strings)... datetime objects can be saved fine but they come out of the bag as an iso format string of the original datetime. - when saving a dictionary, the keys must be a string in the dictionary. If they are not, they will be when coming back from the bag - if using versioning, be sure to instantiate your DataBag object with versioning enabled and the same `history` size each time. Failure to do so will cause interesting things to happen, in particular, your databag will act unversioned and overwrite recent updates w/o cascading the historical change to records. # DataBag ORM There are times an ORM makes life a little easier. ```python3 from databag.orm.model import set_db_path, Model, Field, IntField, Q set_db_path(':memory:') # define one class SomeThing(Model): thingname = Field(str) num = IntField() # make and save one mything = SomeThing(thingname='oobleck', num=23).save() # use one print(mything.name) # get it from db again k = mything.key samething = SomeThing.grab(k) # or search for it with the same syntax as DictBag, but get obj instead otherthing = SomeThing.find_one(num=23) # just one # returns a generator, so list gets all of them things = list(SomeThing.find(Q.num > 19)) ```


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl databag-1.5.0:

    pip install databag-1.5.0.whl


نصب پکیج tar.gz databag-1.5.0:

    pip install databag-1.5.0.tar.gz