معرفی شرکت ها


data-science-types-0.2.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Type stubs for Python machine learning libraries
ویژگی مقدار
سیستم عامل -
نام فایل data-science-types-0.2.9
نام data-science-types
نسخه کتابخانه 0.2.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده PAL
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/predictive-analytics-lab/data-science-types
آدرس اینترنتی https://pypi.org/project/data-science-types/
مجوز Apache License 2.0
# Mypy type stubs for NumPy, pandas, and Matplotlib [![Join the chat at https://gitter.im/data-science-types/community](https://badges.gitter.im/data-science-types/community.svg)](https://gitter.im/data-science-types/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) This is a [PEP-561][pep-561]-compliant stub-only package which provides type information for [matplotlib][matplotlib], [numpy][numpy] and [pandas][pandas]. The [mypy][mypy] type checker (or pytype or PyCharm) can [recognize][mypy-docs] the types in these packages by installing this package. ### NOTE: This is a work in progress Many functions are already typed, but a *lot* is still missing (NumPy and pandas are *huge* libraries). Chances are, you will see a message from Mypy claiming that a function does not exist when it does exist. If you encounter missing functions, we would be delighted for you to send a PR. If you are unsure of how to type a function, we can discuss it. ## Installing You can get this package from PyPI: ```bash pip install data-science-types ``` To get the most up-to-date version, install it directly from GitHub: ```bash pip install git+https://github.com/predictive-analytics-lab/data-science-types ``` Or clone the repository somewhere and do `pip install -e .`. ## Examples These are the kinds of things that can be checked: ### Array creation ```python import numpy as np arr1: np.ndarray[np.int64] = np.array([3, 7, 39, -3]) # OK arr2: np.ndarray[np.int32] = np.array([3, 7, 39, -3]) # Type error arr3: np.ndarray[np.int32] = np.array([3, 7, 39, -3], dtype=np.int32) # OK arr4: np.ndarray[float] = np.array([3, 7, 39, -3], dtype=float) # Type error: the type of ndarray can not be just "float" arr5: np.ndarray[np.float64] = np.array([3, 7, 39, -3], dtype=float) # OK ``` ### Operations ```python import numpy as np arr1: np.ndarray[np.int64] = np.array([3, 7, 39, -3]) arr2: np.ndarray[np.int64] = np.array([4, 12, 9, -1]) result1: np.ndarray[np.int64] = np.divide(arr1, arr2) # Type error result2: np.ndarray[np.float64] = np.divide(arr1, arr2) # OK compare: np.ndarray[np.bool_] = (arr1 == arr2) ``` ### Reductions ```python import numpy as np arr: np.ndarray[np.float64] = np.array([[1.3, 0.7], [-43.0, 5.6]]) sum1: int = np.sum(arr) # Type error sum2: np.float64 = np.sum(arr) # OK sum3: float = np.sum(arr) # Also OK: np.float64 is a subclass of float sum4: np.ndarray[np.float64] = np.sum(arr, axis=0) # OK # the same works with np.max, np.min and np.prod ``` ## Philosophy The goal is not to recreate the APIs exactly. The main goal is to have *useful* checks on our code. Often the actual APIs in the libraries is more permissive than the type signatures in our stubs; but this is (usually) a feature and not a bug. ## Contributing We always welcome contributions. All pull requests are subject to CI checks. We check for compliance with Mypy and that the file formatting conforms to our Black specification. You can install these dev dependencies via ```bash pip install -e '.[dev]' ``` This will also install NumPy, pandas, and Matplotlib to be able to run the tests. ### Running CI locally (recommended) We include a script for running the CI checks that are triggered when a PR is opened. To test these out locally, you need to install the type stubs in your environment. Typically, you would do this with ```bash pip install -e . ``` Then use the `check_all.sh` script to run all tests: ```bash ./check_all.sh ``` Below we describe how to run the various checks individually, but `check_all.sh` should be easier to use. ### Checking compliance with Mypy The settings for Mypy are specified in the `mypy.ini` file in the repository. Just running ```bash mypy tests ``` from the base directory should take these settings into account. We enforce 0 Mypy errors. ### Formatting with black We use [Black][black] to format the stub files. First, install `black` and then run ```bash black . ``` from the base directory. ### Pytest ```bash python -m pytest -vv tests/ ``` ### Flake8 ```bash flake8 *-stubs ``` ## License [Apache 2.0](LICENSE) [pep-561]: https://www.python.org/dev/peps/pep-0561/ [matplotlib]: https://matplotlib.org [numpy]: https://numpy.org [pandas]: https://pandas.pydata.org [mypy]: http://www.mypy-lang.org/ [mypy-docs]: https://mypy.readthedocs.io/en/latest/installed_packages.html [black]: https://github.com/psf/black


نیازمندی

مقدار نام
- black
- flake8
- flake8-pyi
- matplotlib
==0.770 mypy
- numpy
- pandas
- pytest


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl data-science-types-0.2.9:

    pip install data-science-types-0.2.9.whl


نصب پکیج tar.gz data-science-types-0.2.9:

    pip install data-science-types-0.2.9.tar.gz