معرفی شرکت ها


data-expectations-1.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Are your data meeting all your expecations
ویژگی مقدار
سیستم عامل -
نام فایل data-expectations-1.2.0
نام data-expectations
نسخه کتابخانه 1.2.0
نگهدارنده ['Joocer']
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/joocer/data_expectations
آدرس اینترنتی https://pypi.org/project/data-expectations/
مجوز -
<img src="icon.png" height="92px" /> ## Data Expectations _Are your data meeting your expectations?_ ---- [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/joocer/data_expectations/blob/main/LICENSE) [![Regression Suite](https://github.com/joocer/data_expectations/actions/workflows/regression_suite.yaml/badge.svg)](https://github.com/joocer/data_expectations/actions/workflows/regression_suite.yaml) [![Static Analysis](https://github.com/joocer/data_expectations/actions/workflows/static_analysis.yml/badge.svg)](https://github.com/joocer/data_expectations/actions/workflows/static_analysis.yml) [![codecov](https://codecov.io/gh/joocer/data_expectations/branch/main/graph/badge.svg?token=XA60LUVH0W)](https://codecov.io/gh/joocer/data_expectations) [![Downloads](https://pepy.tech/badge/data-expectations)](https://pepy.tech/project/data-expectations) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![PyPI Latest Release](https://img.shields.io/pypi/v/data-expectations.svg)](https://pypi.org/project/data-expectations/) [![FOSSA Status](https://app.fossa.com/api/projects/git%2Bgithub.com%2Fjoocer%2Fdata_expectations.svg?type=shield)](https://app.fossa.com/projects/git%2Bgithub.com%2Fjoocer%2Fdata_expectations?ref=badge_shield) Data Expectations is a Python library which takes a delarative approach to asserting qualities of your datasets. Instead of tests like `is_sorted` to determine if a column is ordered, the expectation is `column_values_are_increasing`. Most of the time you don't need to know _how_ it got like that, you are only interested _what_ the data looks like. Expectations can be used alongside, or in place of a schema validator, however Expectations is intended to perform validation of the data in a dataset, not just the structure of a table. Records should be a Python dictionary (or dictionary-like object) and can be processed one-by-one, or against an entire list of dictionaries. [Data Expectations](https://github.com/joocer/data_expectations) was inspired by the great [Great Expectations](https://github.com/great-expectations/great_expectations) library, but I wanted something which was easier to quickly set up and run. Data Expectations can do less, but it does it with a fraction of the effort. Data Expectations was written to run as a step in data processing pipelines, testing the data before it is committed to the warehouse. ## Provided Expectations - **expect_column_to_exist** (column) - **expect_column_names_to_match_set** (columns, ignore_excess:true) - **expect_column_values_to_not_be_null** (column) - **expect_column_values_to_be_of_type** (column, expected_type, ignore_nulls:true) - **expect_column_values_to_be_in_type_list** (column, type_list, ignore_nulls:true) - **expect_column_values_to_be_more_than** (column, threshold, ignore_nulls:true) - **expect_column_values_to_be_less_than** (column, threshold, ignore_nulls:true) - **expect_column_values_to_be_between** (column, maximum, minimum, ignore_nulls:true) - **expect_column_values_to_be_increasing** (column, ignore_nulls:true) - **expect_column_values_to_be_decreasing** (column, ignore_nulls:true) - **expect_column_values_to_be_in_set** (column, symbols, ignore_nulls:true) - **expect_column_values_to_match_regex** (column, regex, ignore_nulls:true) - **expect_column_values_to_match_like** (column, like, ignore_nulls:true) - **expect_column_values_length_to_be_be** (column, length, ignore_nulls:true) - **expect_column_values_length_to_be_between** (column, maximum, minimum, ignore_nulls:true) ## Install ~~~bash pip install data_expectations ~~~ Data Expectations has no external dependencies, can be used ad hoc and in-the-moment without complex set up. ## Example Usage ~~~python import data_expectations as de TEST_DATA = {"name":"charles","age":12} set_of_expectations = [ {"expectation": "expect_column_to_exist", "column": "name"}, {"expectation": "expect_column_to_exist", "column": "age"}, {"expectation": "expect_column_values_to_be_between", "column": "age", "minimum": 0, "maximum": 120}, ] expectations = de.Expectations(set_of_expectations) try: de.evaluate_record(expectations, TEST_DATA) except de.errors.ExpectationNotMetError: print("Data Didn't Meet Expectations") ~~~


نحوه نصب


نصب پکیج whl data-expectations-1.2.0:

    pip install data-expectations-1.2.0.whl


نصب پکیج tar.gz data-expectations-1.2.0:

    pip install data-expectations-1.2.0.tar.gz