معرفی شرکت ها


data-depgraph-0.4.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Micro dependency fulfillment library for scientific datasets
ویژگی مقدار
سیستم عامل -
نام فایل data-depgraph-0.4.4
نام data-depgraph
نسخه کتابخانه 0.4.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Nat Wilson
ایمیل نویسنده natw@fortyninemaps.com
آدرس صفحه اصلی https://github.com/njwilson23/depgraph
آدرس اینترنتی https://pypi.org/project/data-depgraph/
مجوز MIT License
Dependency resolution for datasets ================================== |Build Status| *depgraph* is a tiny (<500 LOC) Python library for expressing networks of datasets and their relationships. In this way, it is superficially similar to `Airflow <https://github.com/apache/incubator-airflow>`__ and `Luigi <https://github.com/spotify/luigi>`__, although those tools contain significantly more functionality. Networks are declared in terms of the relationships (graph edges) between source and target datasets (graph nodes). Target datasets can then report sets of precursor datasets in the correct order. This makes it simple to throw together a build script and construct dependencies, sequentially or with parallelization. Traditionally, each ``Dataset`` is designed to correspond to a file. A ``DatasetGroup`` class handles cases where multiple files can be considered a single file (e.g. a binary data file and its XML metadata). Different kinds of resources, such as database tables, can be used as long as they can be queried to determine whether they exist (how how old they are, in order to tak advantage of age-based incremental building). When a ``Dataset`` requires a different dataset to be built to satisfy its dependencies, it provides a reason, such as: - the ``Dataset`` is missing, and so must be built - the ``Dataset`` is out of date *depgraph* is intended to be a reusable component for constructing scientific dataset build tools. Important considerations for such a build tool are that it must: - permit `reproducible analysis <http://science.sciencemag.org/content/334/6060/1226.long>`__ - be documenting so that `a workflow can be easily reported <http://www.ontosoft.org/gpf/node/1>`__ - perform fast rebuilds to enable experimentation Beyond the standard library, *depgraph* has no dependencies of its own, so it is easy to include in projects running on a laptop, on a large cluster, or in the cloud. *depgraph* supports modern Python implementations (Python 2, Python 3, PyPy), and works on Linux, OS X, and Windows. Important parts --------------- ``Dataset`` defines an individual data product, represented by a filename, *name*. Additional keyword arguments may be provided in order to facilitate the build process. The ancestors of a dataset can be retrieved with ``Dataset.parents(n)``, where *n* is the number of generations to include. *n=0* means include only the direct parents, while *n=1* includes grandparents. *n=-1* includes every ancestor. ``Dataset.roots()`` returns the top-level ancestors, i.e. those with no additional parents. Similarly, ``Dataset.children(n)`` yields the descendants of a dataset, if any. Relationships are defined with ``Dataset.dependson(obj)``, where *obj* is another ``Dataset`` instance. Relationships can be defined programmatically to construct large dependency graphs. A user defined ``build(dataset, reason)`` function (name unimportant) takes a dataset and constructs it based on its ancestors and any other attributes of the ``Dataset``. The *reason* is a ``Reason`` object that specifies the motivation for a build step. The ``depgraph.buildall()`` function or ``Dataset.buildnext()`` method can be used to obtain ancestor datasets and reason pairs to feed to the ``build()`` function. Alternatively, the ``build()`` function can be decorated with the ``buildmanager`` decorator, which creates a function that automatically constructs a dataset by assembling its dependencies in order (see the examples below). Complex dependency graphs can be visualized by using the ``graphviz()`` function, which returns a `DOT language <http://www.graphviz.org/content/dot-language>`__ string encoding the visual graph. Example ------- Declare a set of dependencies resembling the graph below: :: R0 R1 R2 R3 [raw data] \ / | | DA0 DA1 / \ / \ / DB0 DB1 \ / | \ \ / | \ DC0 DC1 DC2 [products] .. code:: python from depgraph import Dataset, buildmanager # Define Datasets # Use an optional keyword `tool` to provide a key instructing our build tool # how to assemble this product. Here we've used strings, but another pattern # would be to provide a callback function R0 = Dataset("data/raw0", tool="read_csv") R1 = Dataset("data/raw1", tool="read_csv") R2 = Dataset("data/raw2", tool="database_query") R3 = Dataset("data/raw3", tool="read_hdf") DA0 = Dataset("step1/da0", tool="merge_fish_counts") DA1 = Dataset("step1/da1", tool="process_filter") DB0 = Dataset("step2/db0", tool="join_counts") DB1 = Dataset("step2/db1", tool="join_by_date") DC0 = Dataset("results/dc0", tool="merge_model_obs") DC1 = Dataset("results/dc1", tool="compute_uncertainty") DC2 = Dataset("results/dc2", tool="make_plots") # Declare dependency relationships so that depgraph and determine the order of # the build DA0.dependson(R0, R1) DA1.dependson(R2) DB0.dependson(DA0, DA1) DB1.dependson(DA1, R3) DC0.dependson(DB0, DB1) DC1.dependson(DB1) DC2.dependson(DB1) # Option 1: # Define a function that builds individual dependencies. The *buildmanager* # decorator transforms it into a loop that builds all dependencies above a # target @buildmanager def batchbuilder(dependency, reason): # [....] return exitcode batchbuilder(DC1) # Option 2: # Implement the build loop manually from depgraph import buildall def build(dependency, reason): # This may have the same logic as `batchbuilder` above, but we # will call it directly rather than wrapping it in @buildmanager # [....] return exitcode for stage in buildall(DC1): # A build stage is a list of dependencies whose own dependencies are met and # that are independent, i.e. they can be built in parallel for dep, reason in stage: # Each target is a dataset with a 'name' attribute and whatever # additional keyword arguments where defined with it. # The 'reason' is a depgraph.Reason object that codifies why a # particular target is necessary (e.g. it's out of date, it's missing # and required by a subsequent target, etc.) print("Building {0} with {1} because {2}".format(dep.name, dep.tool, reason)) # Call a function or start a subprocess that will result in the # target being built and saved to a file return_val = build(dep, reason) # Perform logging, clean-up, or error handling operations # [....] Changes ------- 0.4 ~~~ - Performance improvements - ``buildall`` generator function, which is more efficient than repeatedly calling ``Dataset.buildnext()`` 0.3 ~~~ - Cyclic graph detection - Graphviz export 0.2 ~~~ - Rewrite, dropping ``DependencyGraph`` and making ``Dataset`` the primary class 0.1 ~~~ - First version, copied from ``depchain`` module of asputil package .. |Build Status| image:: https://travis-ci.org/njwilson23/depgraph.svg?branch=master :target: https://travis-ci.org/njwilson23/depgraph


نحوه نصب


نصب پکیج whl data-depgraph-0.4.4:

    pip install data-depgraph-0.4.4.whl


نصب پکیج tar.gz data-depgraph-0.4.4:

    pip install data-depgraph-0.4.4.tar.gz