معرفی شرکت ها


dasladen-0.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Simple, tiny and ridiculus ETL made with Python
ویژگی مقدار
سیستم عامل -
نام فایل dasladen-0.2.1
نام dasladen
نسخه کتابخانه 0.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Vagner Pagotti
ایمیل نویسنده pagotti@gmail.com
آدرس صفحه اصلی https://github.com/pagotti/dasladen
آدرس اینترنتی https://pypi.org/project/dasladen/
مجوز MIT License
DasLaden is a simple, tiny and ridiculus ETL made with Python ============================================================= Dasladen is a general purpose Python package to make an automate ETL (Extracting, Transforming and Loading data) through the configuration of one or more .json files that represents tasks. It is based on `petl`. It can do some tasks like: - load a .csv file to database table - run a database query into a .csv file - run a database query into a database table - convert a .csv file into another .csv file - convert a .xls file into a .csv file - load a .xml file into a database table - convert a .xls file into a .csv file This tasks can be configured to do some basic transformations offer by `petl` and you can write your own transformations in a Python module or class to be called by Dasladen during loading process. There is others types of tasks to do things like: - Compact files into .zip file - Extract files from .zip file - Upload a file - Download a file - Execute a Python script - Execute a SQL command The tasks are configured in a `.json` file that supports a sequence of tasks that will be executed in configured order. Details of how to configure tasks will be in Wiki pages. The basic steps to use DasLaden is: - Install dasladen package via `pip install dasladen` in your environment or in virtualenv. - Install database driver package if you want to execute database tasks. Dasladen is prepared to run with the following drivers: MySQL via `PyMySQL`, MS SQL Server via `pyodbc` and Oracle via `cx_Oracle`. Please see the limitations on the driver package that you choose. - Create a folder for you project. - Prepare a folder structure in project folder with following names: - `input` Is the default folder to put input files, like .csv, .xml, .xls and .sql files - `output` Is the default folder that tasks write target files - `module` Is the folder for python scripts if you can't put then in project folder - `capture` Is the default folder to drop task files (.json or .zip) - `log` Is the folder that Dasladen write task logs - `tasks` Is the folder that you can put tasks files. It is only a suggestion. - Create a `.json` file with your tasks in `tasks` folder. - Start DasLaden from project folder calling `python -m dasladen`. - If you want to see log in console window, pass a `--verbose` as argument on call. - Copy the `.json` tasks file from `tasks` to the `capture` folder. The watcher will open the tasks file and process it. To see result you can open `log` folder and search for `watcher_DD_TT.log` where DD_TT is the date and time that log was generated. In `log` folder you can see individual tasks logs too. It is important that you copy the task file instead move it, because on finish it will be deleted. If you drop a file other than `.zip` in `capture` folder, that file will be move to `input` folder. You can zip the `.json` file with all other dependent files (.csv, .xls, etc.) and copy that zip into `capture` folder too. Watcher will unzip then at a temporary folder, copy input files (other than `.json` files) to input folder and execute the `.json` file. In the `.json` file you can configure a scheduler to run the tasks. With it you can delay a execution or configure its recurrence. Data drivers via PyPi packages: - MySQL via [PyMySQL](https://pypi.org/project/PyMySQL/) package. v >= 0.7.5 - MS SQL Server via [pyodbc](https://pypi.org/project/pyodbc/) package. v >= 3.0.10 - Oracle via [cx_Oracle](https://pypi.org/project/cx_Oracle/) package. v >= 5.2.1 - PostgreSQL via [psycopg2](https://pypi.org/project/psycopg2/) package. v >= 2.8.3 The current version works with Python 2 and 3.


نیازمندی

مقدار نام
- schedule
- petl
- backports.tempfile
- ftputil
- xlrd
- xlwt-future
- requests


نحوه نصب


نصب پکیج whl dasladen-0.2.1:

    pip install dasladen-0.2.1.whl


نصب پکیج tar.gz dasladen-0.2.1:

    pip install dasladen-0.2.1.tar.gz