معرفی شرکت ها


dask-drmaa-0.2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Dask on DRMAA
ویژگی مقدار
سیستم عامل -
نام فایل dask-drmaa-0.2.1
نام dask-drmaa
نسخه کتابخانه 0.2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Matthew Rocklin
ایمیل نویسنده mrocklin@gmail.com
آدرس صفحه اصلی http://github.com/dask/dask-drmaa/
آدرس اینترنتی https://pypi.org/project/dask-drmaa/
مجوز BSD
Dask on DRMAA ============= |Build Status| |PyPI Release| |conda-forge Release| Deploy a Dask.distributed_ cluster on top of a cluster running a DRMAA_-compliant job scheduler. Example ------- Launch from Python .. code-block:: python from dask_drmaa import DRMAACluster cluster = DRMAACluster() from dask.distributed import Client client = Client(cluster) cluster.start_workers(2) >>> future = client.submit(lambda x: x + 1, 10) >>> future.result() 11 Or launch from the command line:: $ dask-drmaa 10 # starts local scheduler and ten remote workers Install ------- Python packages are available from PyPI and can be installed with ``pip``:: pip install dask-drmaa Also ``conda`` packages are available from conda-forge:: conda install -c conda-forge dask-drmaa Additionally the package can be installed from GitHub with the latest changes:: pip install git+https://github.com/dask/dask-drmaa.git --upgrade or:: git clone git@github.com:dask/dask-drmaa.git cd dask-drmaa pip install . You must have the DRMAA system library installed and be able to submit jobs from your local machine. Please make sure to set the environment variable ``DRMAA_LIBRARY_PATH`` to point to the location of ``libdrmaa.so`` for your system. Testing ------- This repository contains a Docker-compose testing harness for a Son of Grid Engine cluster with a master and two slaves. You can initialize this system as follows: .. code-block:: bash docker-compose build ./start-sge.sh If you have done this previously and need to refresh your solution you can do the following .. code-block:: bash docker-compose stop docker-compose build --no-cache ./start-sge.sh And run tests with py.test in the master docker container .. code-block:: bash docker exec -it sge_master /bin/bash -c "cd /dask-drmaa; python setup.py develop" docker exec -it sge_master /bin/bash -c "cd /dask-drmaa; py.test dask_drmaa --verbose" Adaptive Load ------------- Dask-drmaa can adapt to scheduler load, deploying more workers on the grid when it has more work, and cleaning up these workers when they are no longer necessary. This can simplify setup (you can just leave a cluster running) and it can reduce load on the cluster, making IT happy. To enable this, call the ``adapt`` method of a ``DRMAACluster``. You can submit computations to the cluster without ever explicitly creating workers. .. code-block:: python from dask_drmaa import DRMAACluster from dask.distributed import Client cluster = DRMAACluster() cluster.adapt() client = Client(cluster) futures = client.map(func, seq) # workers will be created as necessary Extensible ---------- The DRMAA interface is the lowest common denominator among many different job schedulers like SGE, SLURM, LSF, Torque, and others. However, sometimes users need to specify parameters particular to their cluster, such as resource queues, wall times, memory constraints, etc.. DRMAA allows users to pass native specifications either when constructing the cluster or when starting new workers: .. code-block:: python cluster = DRMAACluster(template={'nativeSpecification': '-l h_rt=01:00:00'}) # or cluster.start_workers(10, nativeSpecification='-l h_rt=01:00:00') Related Work ------------ * DRMAA_: The Distributed Resource Management Application API, a high level API for general use on traditional job schedulers * drmaa-python_: The Python bindings for DRMAA * DaskSGE_: An earlier dask-drmaa implementation * `Son of Grid Engine`_: The default implementation used in testing * Dask.distributed_: The actual distributed computing library this launches .. _DRMAA: https://www.drmaa.org/ .. _drmaa-python: http://drmaa-python.readthedocs.io/en/latest/ .. _`Son of Grid Engine`: https://arc.liv.ac.uk/trac/SGE .. _dasksge: https://github.com/mfouesneau/dasksge .. _Dask.distributed: http://distributed.readthedocs.io/en/latest/ .. _DRMAA: https://www.drmaa.org/ .. |Build Status| image:: https://travis-ci.org/dask/dask-drmaa.svg?branch=master :target: https://travis-ci.org/dask/dask-drmaa .. |PyPI Release| image:: https://img.shields.io/pypi/v/dask-drmaa.svg :target: https://pypi.python.org/pypi/dask-drmaa .. |conda-forge Release| image:: https://img.shields.io/conda/vn/conda-forge/dask-drmaa.svg :target: https://github.com/conda-forge/dask-drmaa-feedstock


نحوه نصب


نصب پکیج whl dask-drmaa-0.2.1:

    pip install dask-drmaa-0.2.1.whl


نصب پکیج tar.gz dask-drmaa-0.2.1:

    pip install dask-drmaa-0.2.1.tar.gz