# dash-io
An API prototype for simplifying IO in Dash. This is an experimental library and not an official Plotly product.
## Quickstart
To install the library:
```bash
pip install dash-io
```
Start using it inside Python
```python
import dash_io as dio
# ...
url_df = dio.url_from_pandas(df) # dataframe
url_im = dio.url_from_pillow(im) # PIL image
# ...
df = dio.url_to_pandas(url_df)
im = dio.url_to_pillow(url_im)
```
## Usage
### Pillow
```python
from PIL import Image
import numpy as np
import dash_io as dio
# Dummy image in Pillow
im = Image.fromarray(np.random.randint(0, 255, (100,100,3)))
# Encode the image into a data url
data_url = dio.url_from_pillow(im, format="jpg")
# Decode the data url into a PIL image
im = dio.url_to_pillow(data_url, format="jpg")
```
The following format are currently supported: `jpg`, `png`.
### Pandas
If you use `xlsx`, make sure to install a third-party engine such as `openpyxl`.
To use it in pandas:
```python
import pandas as pd
import dash_io as dio
# Dummy data
data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
df = pd.DataFrame.from_dict(data)
# To encode/decode in binary CSV format
encoded = dio.url_from_pandas(df, format="csv", index=False)
decoded = dio.url_to_pandas(encoded, format="csv")
# To encode/decode in binary parquet format
encoded = dio.url_from_pandas(df, format="parquet")
decoded = dio.url_to_pandas(encoded, format="parquet")
# To encode/decode in string CSV format (i.e. text/csv MIME type)
encoded = dio.url_from_pandas(df, format="csv", mime_type="text", mime_subtype="csv", index=False)
decoded = dio.url_to_pandas(encoded, format="csv")
```
The following format are currently supported: `csv`, `parquet`, `feather`, `xlsx`.
### JSON
```python
import dash_io as dio
# Encode/decode dictionary
data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
encoded = dio.url_from_json(data)
decoded = dio.url_to_json(encoded)
# It also works with lists and other JSON-serializable objects
encoded = dio.url_from_json([1,2,3,4,5])
```
Note that if a `dict` key is an integer, it will be converted to string by `json`. This is a normal behavior.
### Numpy
By default, `numpy` arrays will not contain the mime header. However, you can enable it with `header=True` (e.g. if you want to upload/download a `npy` file).
```python
import dash_io as dio
# Encode/decode numpy arrays without MIME header by default
array = np.array([[1, 2, 3], [4, 5, 6]])
encoded = dio.url_from_numpy(array)
decoded = dio.url_to_numpy(encoded)
# You can also use headers
encoded = dio.url_from_numpy(array, header=True)
decoded = dio.url_to_numpy(encoded, header=True)
```
Note that pickling is disabled for `npy` files for security reasons.
## Documentation
You can access the documentation by calling:
```python
import dash_io as dio
help(dio)
```
You can find the up-to-date output from `help` inside [`DOCS.txt`](DOCS.txt).
## Development
First, clone this repo:
```bash
git clone https://github.com/plotly/dash-io
```
### Testing
Create a venv:
```bash
python -m venv venv
source venv/bin/activate
```
Install dev dependencies:
```bash
cd dash-io
pip install requirements-dev.txt
```
Run pytest:
```
python -m pytest
```