معرفی شرکت ها


darkmappy-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Scalable hybrid Bayesian dark-matter reconstruction algorithms
ویژگی مقدار
سیستم عامل -
نام فایل darkmappy-0.1.0
نام darkmappy
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Matthew A. Price, Jason D. McEwen & Contributors
ایمیل نویسنده m.price.17@ucl.ac.uk
آدرس صفحه اصلی https://github.com/astro-informatics/DarkMappy
آدرس اینترنتی https://pypi.org/project/darkmappy/
مجوز GNU General Public License v3 (GPLv3)
DarkMappy: mapping the dark universe ================================================================================================================= .. image:: https://img.shields.io/badge/GitHub-DarkMappy-brightgreen.svg?style=flat :target: https://github.com/astro-informatics/DarkMappy .. image:: https://github.com/astro-informatics/DarkMappy/actions/workflows/python.yml/badge.svg?branch=main :target: https://github.com/astro-informatics/DarkMappy/actions/workflows/python.yml .. image:: https://readthedocs.org/projects/ansicolortags/badge/?version=latest :target: https://astro-informatics.github.io/DarkMappy .. image:: https://codecov.io/gh/astro-informatics/DarkMappy/branch/main/graph/badge.svg?token=A5ogGPslpU :target: https://codecov.io/gh/astro-informatics/DarkMappy .. image:: https://img.shields.io/badge/License-GPL-blue.svg :target: http://perso.crans.org/besson/LICENSE.html .. image:: http://img.shields.io/badge/arXiv-2004.07855-orange.svg?style=flat :target: https://arxiv.org/abs/2004.07855 .. image:: http://img.shields.io/badge/arXiv-1812.04014-orange.svg?style=flat :target: https://arxiv.org/abs/1812.04014 ``darkmappy`` is a lightweight python package which implements the hybrid Bayesian dark-matter reconstruction techniques outlined on the plane in `Price et al. 2019 <https://academic.oup.com/mnras/article-abstract/506/3/3678/6319513>`_, and on the celestial sphere in `Price et al. 2021 <https://academic.oup.com/mnras/article/500/4/5436/5986632>`_. For comparison (and as initilaisiation for our iterations) the spherical Kaiser-Squires estimator of the convergence is implemented (see `Wallis et al. 2021 <https://academic.oup.com/mnras/article-abstract/509/3/4480/6424933>`_). These techniques are based on *maximum a posteriori* estimation which, by construction, support principled uncertainty quantification, see `Pereyra 2016 <https://epubs.siam.org/doi/10.1137/16M1071249>`_. Further examples of such uncertainty quantification techniques developed for the weak lensing setting can be found in related articles `Price et al. 2019a <https://academic.oup.com/mnras/article/489/3/3236/5554769>`_ and `Price et al. 2019b <https://academic.oup.com/mnras/article/492/1/394/5672642>`_. INSTALLATION ============ ``darkmappy`` can be installed through PyPi by running .. code-block:: bash pip install darkmappy or alternatively from source by running the following .. code-block:: bash git clone https://github.com/astro-informatics/DarkMappy.git cd DarkMappy bash build_darkmappy.sh following which the test suite can be executed by running .. code-block:: bash pytest --black darkmappy/tests BASIC USAGE =========== For planar reconstructions across the flat-sky the estimator can be run by the following, note that images must be square. .. code-block:: python import numpy as np import darkmappy.estimators as dm # LOAD YOUR DATA data = np.load(<path_to_shear_data>) ngal = np.load(<path_to_ngal_per_pixel_map>) mask = np.load(<path_to_observation_mask>) # BUILD THE ESTIMATOR dm_estimator = dm.DarkMappyPlane( n = n, # Dimension of image data = data, # Observed shear field mask = mask, # Observational mask ngal = ngal, # Map of number density of observations per pixel wav = [<select_wavelets>], # see https://tinyurl.com/mrxeat3t levels = level, # Wavelet levels supersample = supersample) # Super-resolution factor (typically <~2) # RUN THE ESTIMATOR convergence, diagnostics = dm_estimator.run_estimator() For spherical reconstructions across the full-sky the estimator can be run by the following, note images must be of dimension L by 2L-1, see `McEwen & Wiaux 2011 <https://ieeexplore.ieee.org/document/6006544>`_. .. code-block:: python import numpy as np import darkmappy.estimators as dm # LOAD YOUR DATA data = np.load(<path_to_shear_data>) ngal = np.load(<path_to_ngal_per_pixel_map>) mask = np.load(<path_to_observation_mask>) # BUILD THE ESTIMATOR dm_estimator = dm.DarkMapperSphere( L = L, # Angular Bandlimit N = N, # Azimuthal Bandlimit (wavelet directionality) data = data, # Observational shear data mask = mask, # Observation mask ngal = ngal) # Map of number density of observations per pixel # RUN THE ESTIMATOR convergence, diagnostics = dm_estimator.run_estimator() CONTRIBUTORS ============ `Matthew A. Price <https://cosmomatt.github.io>`_, `Jason D. McEwen <http://www.jasonmcewen.org>`_ & Contributors ATTRIBUTION =========== A BibTeX entry for ``darkmappy`` is: .. code-block:: @article{price:2021:spherical, title = {Sparse Bayesian mass-mapping with uncertainties: Full sky observations on the celestial sphere}, author = {M.~A.~Price and J.~D.~McEwen and L.~Pratley and T.~D.~Kitching}, journal = {Monthly Notices of the Royal Astronomical Society}, year = 2021, month = jan, volume = {500}, number = {4}, pages = {5436-5452}, doi = {10.1093/mnras/staa3563}, publisher = {Oxford University Press} } .. code-block:: @article{price:2021:hypothesis, title = {Sparse Bayesian mass mapping with uncertainties: hypothesis testing of structure}, author = {M.~A.~Price and J.~D.~McEwen and X.~Cai and T.~D.~Kitching and C.~G.~R.~Wallis and {LSST Dark Energy Science Collaboration}}, journal = {Monthly Notices of the Royal Astronomical Society}, year = 2021, month = jul, volume = {506}, number = {3}, pages = {3678--3690}, doi = {10.1093/mnras/stab1983}, publisher = {Oxford University Press} } If, at any point, the direction inverse functionality (i.e. spherical Kaiser-Squires) please cite .. code-block:: @article{wallis:2021:massmappy, title = {Mapping dark matter on the celestial sphere with weak gravitational lensing}, author = {C.~G.~R.~Wallis and M.~A.~Price and J.~D.~McEwen and T.~D.~Kitching and B.~Leistedt and A.~Plouviez}, journal = {Monthly Notices of the Royal Astronomical Society}, year = 2021, month = Nov, volume = {509}, number = {3}, pages = {4480-4497}, doi = {10.1093/mnras/stab3235}, publisher = {Oxford University Press} } Finally, if uncertainty quantification techniques which rely on the approximate level-set threshold (derived by `Pereyra 2016 <https://epubs.siam.org/doi/10.1137/16M1071249>`_) are performed please consider citing relating articles appropriately. LICENSE ======= ``darkmappy`` is released under the GPL-3 license (see `LICENSE.txt <https://github.com/astro-informatics/DarkMappy/blob/main/LICENSE.txt>`_). .. code-block:: DarkMappy Copyright (C) 2022 Matthew A. Price, Jason D. McEwen & contributors This program is released under the GPL-3 license (see LICENSE.txt). This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


نیازمندی

مقدار نام
- numpy
- colorlog
- pyyaml
- pys2let
- pyssht
- optimusprimal


نحوه نصب


نصب پکیج whl darkmappy-0.1.0:

    pip install darkmappy-0.1.0.whl


نصب پکیج tar.gz darkmappy-0.1.0:

    pip install darkmappy-0.1.0.tar.gz