معرفی شرکت ها


darkgreybox-0.3.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

DarkGreyBox: An Open-Source Data-Driven Python Building Thermal Model Inspired By Genetic Algorithms and Machine Learning
ویژگی مقدار
سیستم عامل -
نام فایل darkgreybox-0.3.1
نام darkgreybox
نسخه کتابخانه 0.3.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده csaba zagoni
ایمیل نویسنده czagoni@greenpeace.org
آدرس صفحه اصلی https://github.com/czagoni/darkgreybox
آدرس اینترنتی https://pypi.org/project/darkgreybox/
مجوز -
# Dark Grey Box [![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) [![CircleCI](https://circleci.com/gh/czagoni/darkgreybox.svg?style=shield)](https://circleci.com/gh/czagoni/darkgreybox) [![PyPI version](https://badge.fury.io/py/darkgreybox.svg)](https://badge.fury.io/py/darkgreybox) ## DarkGreyBox: An open-source data-driven python building thermal model inspired by Genetic Algorithms and Machine Learning ### Read the medium article here: https://medium.com/analytics-vidhya/data-driven-thermal-models-for-buildings-15385f744fc5 Constructing simple, accurate and easy-to-interpret thermal models for existing buildings is essential in reducing the environmental impact of our built environment. DarkGreyBox provides a data-driven approach to constructing and fitting RC-equivalent grey box thermal models for buildings, within the classic Machine Learning (ML) framework for straightforward model performance evaluation. A large number of competing models can be set up in easy-to-configure pipelines and the best performing models are selected based on principles inspired by Genetic Algorithms (GA). This approach also addresses the main disadvanatages of classical grey-box thermal modelling techniques by not requiring initial condition values for the thermal parameters to be pre-calculated and also not requiring an excitation signal to be injected into the building for successful model convergence and evaluation. The massive advantages of using a DarkGreyBoxModel over a black-box (i.e. Machine Learning) model - e.g. a deep sequence-to-sequence model - are that it is easily interpreted by humans and that it slots easily into other modelling frameworks. E.g. to model the behaviour of a building with its connected heating system, simply construct a heat source model in a MILP framework and the grey-box building thermal model just slots in as a set of linear differential equations with a handful of parameters. Doing this with a deep ML model would be quite tricky. The easiest way to get familiar with DarkGreyBox is to look at the [tutorials](docs/tutorials/). ## Installation ### Dependencies DarkGreyBox requires: - Python (>= 3.6) - lmfit - pandas - joblib Note: these are only the core dependencies and you will most likely want to install either the optional dependencies or your preferred custom alternatives to them. ### User installation from PyPi package (latest release) Install DarkGreyBox via `pip`: ```bash pip install darkgreybox ``` #### Optional Dependencies This gives you a headstart for using DarkGreyBox in anger. - scikit-learn - numdifftools - statsmodels - matplotlib - jupyter - notebook You can install these additional dependencies via pip: ```bash pip install darkgreybox[dev] ``` ### User installation from source repository You can check the latest sources with the command:: ```bash git clone https://github.com/czagoni/darkgreybox.git ``` You can install the dev dependencies (from the root of the repository): ```bash pip install -e .'[dev]' ``` ## Documentation To access the tutorials you need to have cloned DarkGreyBox from the source repository (see above). ### Tutorials The easiest way to get into the details of how DarkGreyBox works is through following the tutorials: * [Demo Notebook 01 - Ti Model Direct Fit](docs/tutorials/darkgrey_poc_demo_01.ipynb): This notebook demonstrates the direct usage of the DarkGreyBox models via a simple fitting example for a Ti model. * [Demo Notebook 02 - TiTe Model Direct Fit FAIL](docs/tutorials/darkgrey_poc_demo_02.ipynb): This notebook demonstrates the direct usage of the DarkGreyBox models via a simple fitting example for a TiTe model. In this case a local minimum is found during the fitting process and the model heavily oscillates making it unusable. * [Demo Notebook 03 - TiTe Model Wrapper Fit PASS](docs/tutorials/darkgrey_poc_demo_03.ipynb): This notebook demonstrates the usage of the DarkGreyBox models via fitting them with a wrapper function for a TiTe model. * [Demo Notebook 04 - DarkGreyFit](docs/tutorials/darkgrey_poc_demo_04.ipynb): This notebook demonstrates the usage of the DarkGreyBox models via fitting them with DarkGreyFit, setting up and evaluating multiple pipelines at once. Launch a new jupyter notebook from the root of the repository: ```bash jupyter notebook ``` ## Development We welcome new contributors of all experience levels. ### Source code You can check the latest sources with the command:: ```bash git clone https://github.com/czagoni/darkgreybox.git ``` You can install the dev and test dependencies (from the root of the repository): ```bash pip install -e .'[dev,test]' ``` ### Testing After installation, you can launch the test suite from the repo root directory (you will need to have `pytest` installed): ```bash pytest ``` You can check linting from the repo root directory (you will need to have `flake8` installed): ```bash flake8 ```


نیازمندی

مقدار نام
~=1.1.0 lmfit
~=1.5.2 pandas
~=1.2.0 joblib
~=0.13.1 statsmodels
~=0.9.39 numdifftools
~=1.2.0 scikit-learn
~=3.6.3 matplotlib
~=1.0.0 jupyter
~=6.5.2 notebook
~=2.0.1 autopep8
~=5.11.4 isort
~=6.0.0 flake8
~=7.2.1 pytest
~=3.10.0 pytest-mock
~=4.0.0 pytest-cov


نحوه نصب


نصب پکیج whl darkgreybox-0.3.1:

    pip install darkgreybox-0.3.1.whl


نصب پکیج tar.gz darkgreybox-0.3.1:

    pip install darkgreybox-0.3.1.tar.gz