# dammy
![GitHub top language](https://img.shields.io/github/languages/top/ibonn/dammy)
[![Documentation Status](https://readthedocs.org/projects/dammy/badge/?version=latest)](https://dammy.readthedocs.io/en/latest/?badge=latest)
![Travis (.org)](https://img.shields.io/travis/ibonn/dammy)
[![Codacy Badge](https://api.codacy.com/project/badge/Grade/c321b2ee18234712aff9ce2ca69ae6eb)](https://www.codacy.com/manual/ibonn/dammy?utm_source=github.com&utm_medium=referral&utm_content=ibonn/dammy&utm_campaign=Badge_Grade)
[![Maintainability](https://api.codeclimate.com/v1/badges/141299ec4d7519f889d6/maintainability)](https://codeclimate.com/github/ibonn/dammy/maintainability)
[![PyPI download month](https://img.shields.io/pypi/dm/dammy.svg)](https://pypi.python.org/pypi/dammy/)
[![PyPI download week](https://img.shields.io/pypi/dw/dammy.svg)](https://pypi.python.org/pypi/dammy/)
[![PyPI download day](https://img.shields.io/pypi/dd/dammy.svg)](https://pypi.python.org/pypi/dammy/)
Generate fake/dummy data for any purpose
## Table of contents
* [Introduction](#introduction)
* [Features](#features)
* [Example](#example)
* [Installation](#installation)
* [Release history](#release-history)
## Introduction
dammy is a powerful and simple tool to generate fake data. You can use it to mock classes, populate databases and and much more.
You can check the full documentation [here](https://dammy.readthedocs.io/en/latest/).
## Features
* Generate anything within the set of prebuilt objects (Person names, country names, car manufacturers and models, random dates...)
* Compose more complex data easily (Full profiles, complete databases, )
* The possibility to expand the previous set with little to no code
* Completely intuitive, you will learn to use it in less than 10 minutes
* Export the generated data to SQL
## Example
If you wanted to generate 1000 random people, just define what a person looks like and dammy will handle the rest
``` python
from dammy import EntityGenerator
from dammy.functions import cast
from dammy.stdlib import RandomName, RandomString, RandomDateTime, RandomInteger, CountryName
class Person(EntityGenerator):
first_name = RandomName().upper()
password = RandomString(5)
birthday = RandomDateTime(start=datetime(1980, 1, 1), end=datetime(2000, 12, 31), date_format='%d/%m/%Y')
favorite_number = RandomInteger(0, 10)
age = cast((datetime.now() - birthday).days / 365.25, int)
country = CountryName()
# Generate 1000 random people
for i in range(0, 1000):
print(Person())
```
Which will output:
```
{'identifier': 1, 'uid': '9XCha', 'first_name': 'ZAYN', 'blood': 'A+', 'birthday': '24/01/1982', 'favorite_number': 5, 'age': 38, 'country': 'Denmark'}
{'identifier': 2, 'uid': 'bbYbw', 'first_name': 'MALIHA', 'blood': 'AB+', 'birthday': '01/12/1981', 'favorite_number': 1, 'age': 38, 'country': 'Syrian Arab Republic'}
{'identifier': 3, 'uid': 'aGF49', 'first_name': 'ANGEL', 'blood': 'AB+', 'birthday': '18/08/1992', 'favorite_number': 1, 'age': 27, 'country': 'Macedonia, the Former Yugoslav Republic of'}
{'identifier': 4, 'uid': 'Lcr0J', 'first_name': 'REUBEN', 'blood': '0-', 'birthday': '07/11/1997', 'favorite_number': 4, 'age': 22, 'country': 'Dominican Republic'}
{'identifier': 5, 'uid': 'P7mD4', 'first_name': 'MAMADOU', 'blood': 'A+', 'birthday': '02/01/1987', 'favorite_number': 7, 'age': 33, 'country': 'Palau'}
{'identifier': 6, 'uid': 'ykdeL', 'first_name': 'BATSHEVA', 'blood': 'A+', 'birthday': '11/01/1983', 'favorite_number': 5, 'age': 37, 'country': 'Seychelles'}
{'identifier': 7, 'uid': 'h9HjQ', 'first_name': 'JIMENA', 'blood': 'A-', 'birthday': '23/10/1985', 'favorite_number': 0, 'age': 34, 'country': 'China'}
{'identifier': 8, 'uid': 'rjt92', 'first_name': 'YERIK', 'blood': 'AB+', 'birthday': '29/10/1991', 'favorite_number': 5, 'age': 28, 'country': 'Libya'}
{'identifier': 9, 'uid': 'vL0DE', 'first_name': 'YISRAEL', 'blood': 'AB+', 'birthday': '25/03/1989', 'favorite_number': 8, 'age': 30, 'country': 'Spain'}
{'identifier': 10, 'uid': 'CsrhX', 'first_name': 'JOSHUA', 'blood': 'AB+', 'birthday': '20/09/1999', 'favorite_number': 1, 'age': 20, 'country': 'Svalbard and Jan Mayen'}
...
```
It also supports relationships between tables, so you can generate data to populate databases
``` python
from dammy import EntityGenerator
from dammy.db import AutoIncrement, PrimaryKey, ForeignKey
from dammy.stdlib import RandomName, RandomString, RandomDateTime, RandomInteger, CountryName
# Define what a person looks like
class Person(EntityGenerator):
id_pk = PrimaryKey(id=AutoIncrement())
first_name = RandomName().upper()
password = RandomString(5)
birthday = RandomDateTime(start=datetime(1980, 1, 1), end=datetime(2000, 12, 31), date_format='%d/%m/%Y')
favorite_number = RandomInteger(0, 10)
age = cast((datetime.now() - birthday).days / 365.25, int)
country = CountryName()
# Define what a car looks like
class Car(EntityGenerator):
id_pk = PrimaryKey(id=AutoIncrement())
manufacturer_name = CarBrand()
model = CarModel(car_brand=manufacturer_name)
owner = ForeignKey(Person, 'identifier')
```
And the data can be exported to SQL
``` python
from dammy import DatasetGenerator
# Generate a dataset with 20000 cars and 94234 people
dataset = DatasetGenerator((Car, 20000), (Person, 94234)).generate()
dataset.get_sql(save_to='cars_with_owners.sql')
```
## Installation
To install the latest stable release of dammy using pip
```
pip install dammy
```
You can also install the latest development release by cloning the repository and installing it with pip
```
git clone https://github.com/ibonn/dammy.git dammy
cd dammy
pip install -e .
```
## Release history
* 1.1.0
* Iterators added
* 1.0.0
* Semantic versioning used from now on
* Documentation fixed
* Minor code changes (duplicated code removed...)
* 0.1.3
* Code refactored
* All binary operations made possible between BaseGenerator objects
* BaseDammy renamed to BaseGenerator
* EntityGenerator renamed to OperationResult
* DammyEntity renamed to EntityGenerator
* Everything inherits from BaseGenerator
* Removed DatabaseConstraint
* Added UNIQUE constraint support
* Datasets can now be exported to JSON
* Entities can now be exported to JSON and CSV
* dammy.stdlib expanded with new built-in generators
* 0.1.2
* Documentation improved
* DatasetGenerator moved from main to db
* Minor bugs fixed
* 0.1.1
* Can get attributes of entities
* Can call methods on entities
* Ability to perform operations added
* Code improved
* Docstrings added
* 0.0.3
* Fixed import bug in stdlib
* 0.0.1
* First release