معرفی شرکت ها


dalymi-0.1.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

[data like you mean it] A lightweight, data-focused and non-opinionated pipeline manager written in and for Python.
ویژگی مقدار
سیستم عامل -
نام فایل dalymi-0.1.5
نام dalymi
نسخه کتابخانه 0.1.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Joerg Schnitzbauer
ایمیل نویسنده joschnitzbauer@gmail.com
آدرس صفحه اصلی https://github.com/joschnitzbauer/dalymi
آدرس اینترنتی https://pypi.org/project/dalymi/
مجوز MIT
# dalymi *[data like you mean it]* [![Documentation Status](https://readthedocs.org/projects/dalymi/badge/?version=latest)](http://dalymi.readthedocs.io/en/latest/?badge=latest) A lightweight, data-focused and non-opinionated pipeline manager written in and for Python. -------------------------------------------------------------------------------- _dalymi_ allows to build data processing pipelines as [directed acyclic graphs]([https://en.wikipedia.org/wiki/Directed_acyclic_graph]) (DAGs) and facilitates rapid, but controlled, model development. The goal is to prototype quickly, but scale to production with ease. To achieve this, _dalymi_ uses "make"-style workflows, _i.e._ tasks with missing input trigger the execution of input-producing tasks before being executed themselves. At the same time, _dalymi_ provides fine control to run and undo specific pipeline parts for quick test iterations. This ensures output reproducability and minimizes manual errors. Several features facilitate _dalymi_'s goal: - simple, non-opinionated API (most choices left to user) - no external dependencies for pipeline execution - one-line installation (ready for use) - no configuration - auto-generated command line interface for pipeline execution - quick start, but high flexibility to customize and extend: - task output can be stored in any format Python can touch (local files being the default) - customizable command line arguments - templated output location (e.g. timestamped files) - support for automated checks on data integrity during runtime - DAG visualization using [graphviz](https://www.graphviz.org/) - API design encourages good development practices (modular code, defined data schemas, self-documenting code, easy workflow viz, etc.) ## Installation _dalymi_ requires Python >= 3.5. ``` bash pip install dalymi ``` For the latest development: ``` bash pip install git+https://github.com/joschnitzbauer/dalymi.git ``` ## Documentation http://dalymi.readthedocs.io/ ## Simple example simple.py: ``` python from dalymi import Pipeline from dalymi.resources import PandasCSV import pandas as pd # Define resources: numbers_resource = PandasCSV(name='numbers', loc='numbers.csv', columns=['number']) squares_resource = PandasCSV(name='squares', loc='squares.csv', columns=['number', 'square']) # Define the pipeline pl = Pipeline() @pl.output(numbers_resource) def create_numbers(**context): return pd.DataFrame({'number': range(11)}) @pl.output(squares_resource) @pl.input(numbers_resource) def square_numbers(numbers, **context): numbers['square'] = numbers['number']**2 return numbers if __name__ == '__main__': # Run the default command line interface pl.cli() ``` Command line: ```bash python simple.py run # executes the pipeline. skips tasks for which output already exists. ``` More examples can be found [here](https://github.com/joschnitzbauer/dalymi/tree/master/examples). ## Roadmap - More docstrings - Unit tests - Continuous integration - Parallel task processing - REST API during pipeline run - Web interface for pipeline run ## Warranty Although _dalymi_ is successfully used in smaller applications, it is not battle-tested yet and lacks unit tests. If you decide to use it, be prepared to communicate issues or fix bugs (it's not a lot of code... :)). ## Contributions ... are welcome!


نحوه نصب


نصب پکیج whl dalymi-0.1.5:

    pip install dalymi-0.1.5.whl


نصب پکیج tar.gz dalymi-0.1.5:

    pip install dalymi-0.1.5.tar.gz