معرفی شرکت ها


dalex-1.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Responsible Machine Learning in Python
ویژگی مقدار
سیستم عامل -
نام فایل dalex-1.6.0
نام dalex
نسخه کتابخانه 1.6.0
نگهدارنده ['Hubert Baniecki']
ایمیل نگهدارنده ['hbaniecki@gmail.com']
نویسنده Przemyslaw Biecek
ایمیل نویسنده przemyslaw.biecek@gmail.com
آدرس صفحه اصلی https://dalex.drwhy.ai/
آدرس اینترنتی https://pypi.org/project/dalex/
مجوز -
# dalex [dalex: Responsible Machine Learning in Python](http://dalex.drwhy.ai/python) [![Python-check](https://github.com/ModelOriented/DALEX/workflows/Python-check/badge.svg)](https://github.com/ModelOriented/DALEX/actions?query=workflow%3APython-check) [![Supported Python versions](https://img.shields.io/pypi/pyversions/dalex.svg)](https://pypi.org/project/dalex/) [![PyPI version](https://badge.fury.io/py/dalex.svg)](https://badge.fury.io/py/dalex) [![Downloads](https://pepy.tech/badge/dalex)](https://pepy.tech/project/dalex) ## Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust. Distrust leads to ignoration. Ignoration leads to rejection. The `dalex` package xrays any model and helps to explore and explain its behaviour, helps to understand how complex models are working. The main `Explainer` object creates a wrapper around a predictive model. Wrapped models may then be explored and compared with a collection of model-level and predict-level explanations. Moreover, there are fairness methods and interactive exploration dashboards available to the user. The philosophy behind `dalex` explanations is described in the [Explanatory Model Analysis](https://pbiecek.github.io/ema/) book. ## Installation The `dalex` package is available on [PyPI](https://pypi.org/project/dalex/) and [conda-forge](https://anaconda.org/conda-forge/dalex). ```console pip install dalex -U conda install -c conda-forge dalex ``` One can install optional dependencies for all additional features using `pip install dalex[full]`. ### Resources: https://dalex.drwhy.ai/python ### API reference: https://dalex.drwhy.ai/python/api [![http://python.drwhy.ai/](https://raw.githubusercontent.com/ModelOriented/DALEX-docs/master/dalex/dalex-diagram.png)](http://python.drwhy.ai/) ## Authors The authors of the `dalex` package are: * [Hubert Baniecki](https://github.com/hbaniecki) * [Wojciech Kretowicz](https://github.com/wojciechkretowicz) * [Piotr Piatyszek](https://github.com/piotrpiatyszek) maintains the `arena` module * [Jakub Wisniewski](https://github.com/jakwisn) maintains the `fairness` module * [Mateusz Krzyzinski](https://github.com/krzyzinskim) maintains the `aspect` module * [Artur Zolkowski](https://github.com/arturzolkowski) maintains the `aspect` module * [Przemyslaw Biecek](https://github.com/pbiecek) We welcome contributions: [start by opening an issue on GitHub](https://github.com/ModelOriented/DALEX/issues/new). ## Citation If you use `dalex`, please cite our [JMLR paper](https://jmlr.org/papers/v22/20-1473.html): ```html @article{JMLR:v22:20-1473, author = {Hubert Baniecki and Wojciech Kretowicz and Piotr Piatyszek and Jakub Wisniewski and Przemyslaw Biecek}, title = {dalex: Responsible Machine Learning with Interactive Explainability and Fairness in Python}, journal = {Journal of Machine Learning Research}, year = {2021}, volume = {22}, number = {214}, pages = {1-7}, url = {http://jmlr.org/papers/v22/20-1473.html} } ``` ------------------------------------------- ## Changelog ### v1.6.0 (2023-02-16) * Add `ZeroDivisionError` to precision and recall functions ([#532](https://github.com/ModelOriented/DALEX/pull/532)) * Add a warning to `calculate_depend_matrix()` when there is a variable with only one value ([#537](https://github.com/ModelOriented/DALEX/issues/537)) * Fix missing EDA plots in (Python) Arena ([#544](https://github.com/ModelOriented/DALEX/issues/544)) * Fix baseline positions in the subplots of the predict parts explanations: BreakDown, Shap ([#545](https://github.com/ModelOriented/DALEX/pull/545)) ### v1.5.0 (2022-09-07) *This release consists of mostly maintenance updates and, after a year, marks the Beta -> Stable release.* * increase the dependency from `python>=3.6` to `python>=3.7` (at this moment, both `numpy` and `pandas` depend on `python>=3.8`), and add `python>=3.10` to CI * increase the dependencies to `pandas>=1.2.5`, `numpy>=1.20.3` ([#526](https://github.com/ModelOriented/DALEX/issues/526)), `scipy>=1.6.3`, `plotly>=5.1.0`, and `tqdm>=4.61.2` due to errors with `pandas` (see [tqdm/#1199](https://github.com/tqdm/tqdm/issues/1199)) * remove the use of `pd.Series.append()` ([#489](https://github.com/ModelOriented/DALEX/issues/489)) * remove the use of `np.isnan` causing error in `dalex.fairness` ([#491](https://github.com/ModelOriented/DALEX/issues/491)) * fix iBreakDown plot y-axis labels ([#493](https://github.com/ModelOriented/DALEX/issues/493)) * stop the Arena's `werkzeug` server using a clearner and still supported API ([#518](https://github.com/ModelOriented/DALEX/issues/518)) ### v1.4.1 (2021-11-08) #### features * added fairness plot for regression models to `Arena` ([dalex/#408](https://github.com/ModelOriented/DALEX/issues/408)) * added new `facet_scales` parameter to `AP.plot` and `CP.plot`, which allows to free the y-axis with `facet_scales="free"` ([dalex/#469](https://github.com/ModelOriented/DALEX/issues/469)); consistent with R ([DALEX/#468](https://github.com/ModelOriented/DALEX/issues/468), [ingredients/#140](https://github.com/ModelOriented/ingredients/pull/140)) #### fixes * fixed `AP` and `CP` progress bars ### v1.4.0 (2021-09-09) * added new `aspect` module, which will focus on groups of dependent variables [@krzyzinskim](https://github.com/krzyzinskim) & [@arturzolkowski](https://github.com/arturzolkowski) * added new `scipy>=1.5.4` dependency #### breaking changes * improved the calculation of AUC, ROC plot ([#459](https://github.com/ModelOriented/DALEX/issues/459)) #### fixes * wrong yaxis labels in `VariableImportance.plot(split="variable")` ([#451](https://github.com/ModelOriented/DALEX/issues/451)) * `repr_html()` didn't work for explanation objects before using the `fit` method ([#449](https://github.com/ModelOriented/DALEX/issues/449)) #### features * added new `Aspect` object with the `predict_triplot`, `model_triplot`, `predict_parts`, `model_parts`, `get_aspects` methods * added new `PredictTriplot`, `ModelTriplot`, `PredictAspectImportance`, `ModelAspectImportance` objects with the `plot` method ### v1.3.0 (2021-07-17) #### features * added bias mitigation techniques (`resample`, `reweight`, `roc_pivot`) into the `fairness` module ([#432](https://github.com/ModelOriented/DALEX/issues/432)) ### v1.2.0 (2021-05-31) #### breaking changes * method `set_options` in Arena now takies `option_category` instead of `plot_type` (`SHAPValues` => `ShapleyValues`, `FeatureImportance` => `VariableImportance`) ([#420](https://github.com/ModelOriented/DALEX/pull/420)) * methods using the `N` parameter now properly sample rows from `data` #### fixes * fixed wrong error value when no `predict_function` is found in `Explainer` ([77ca90d](https://github.com/ModelOriented/DALEX/commit/77ca90d)) * set multiprocessing context to `'spawn'` ([#412](https://github.com/ModelOriented/DALEX/issues/412)) * fixed bug in `metric_scores` plot that made only one subgroup appear on y-axis ([#416](https://github.com/ModelOriented/DALEX/issues/416)) * added support for older keras models ([#415](https://github.com/ModelOriented/DALEX/issues/415)) #### features * added a resource mechanism to Arena ([#419](https://github.com/ModelOriented/DALEX/issues/419)) * added `ShapleyValuesImportance` and `ShapleyValuesDependence` plots to Arena ([#420](https://github.com/ModelOriented/DALEX/pull/420)) * return `error` instead of `NaN` when AUC is calculated on observations from one class only ([#415](https://github.com/ModelOriented/DALEX/issues/415)) ### v1.1.0 (2021-04-18) #### breaking changes * fixed concurrent random seeds when `processes > 1` ([#392](https://github.com/ModelOriented/DALEX/issues/392)), which means that the results of parallel computation will vary between `v1.1.0` and previous versions #### fixes * `GroupFairnessX.plot(type='fairness_check')` generates ticks according to the x-axis range ([#409](https://github.com/ModelOriented/DALEX/issues/409)) * `GroupFainressRegression.plot(type='density')` has a more readable hover - only for outliers ([#409](https://github.com/ModelOriented/DALEX/issues/409)) * `BreakDown.plot()` wrongly displayed the "+all factors" bar when `max_vars < p` ([#401](https://github.com/ModelOriented/DALEX/issues/401)) * `GroupFairnessClassification.plot(type='metric_scores')` did not handle `NaN`'s ([#399](https://github.com/ModelOriented/DALEX/issues/399)) #### features * Experimental support for regression models in the `fairness` module. Added `GroupFairnessRegression` object, with the `plot` method having two types: `fairness_check` and `density`. `Explainer.model_fairness` method now depends on the `model_type` attribute. ([#391](https://github.com/ModelOriented/DALEX/issues/391)) * added `N` parameter to the `predict_parts` method which is `None` by default ([#402](https://github.com/ModelOriented/DALEX/issues/402)) * `epsilon` is now an argument of the `GroupFairnessClassification` object ([#397](https://github.com/ModelOriented/DALEX/issues/397)) ### v1.0.1 (2021-02-19) #### fixes * fixed broken range on `yaxis` in `fairness_check` plot ([#376](https://github.com/ModelOriented/DALEX/issues/376)) * warnings because `np.float` is depracated since `numpy` v1.20 ([#384](https://github.com/ModelOriented/DALEX/issues/384)) #### other * added `ipython` to test dependencies ### v1.0.0 (2020-12-29) #### breaking changes These are summed up in ([#368](https://github.com/ModelOriented/DALEX/issues/368)): * rename modules: `dataset_level` into `model_explanations`, `instance_level` into `predict_explanations`, `_arena` module into `arena` * use `__dir__` method to define autocompletion in IPython environment - show only `['Explainer', 'Arena', 'fairness', 'datasets']` * add `plot` method and `result` attribute to `LimeExplanation` (use `lime.explanation.Explanation.as_pyplot_figure()` and `lime.explanation.Explanation.as_list()`) * `CeterisParibus.plot(variable_type='categorical')` now has horizontal barplots - `horizontal_spacing=None` by default (varies on `variable_type`). Also, once again added the "dot" for observation value. * `predict_fn` in `predict_surrogate` now uses `predict_function` (trying to make it work for more frameworks) #### fixes * fixed wrong verbose output when any value in `y_hat/residuals` was an `int` not `float` * added proper `"-"` sign to negative dropout losses in `VariableImportance.plot` #### features * added `geom='bars'` to `AggregateProfiles.plot` to force the categorical plot * added `geom='roc'` and `geom='lift'` to `ModelPerformance.plot` * added Fairness plot to Arena #### other * remove `colorize` from `Explainer` * updated the documentation, refactored code (import modules not functions, unify variable names in `object.py`, move utils funcitons from `checks.py` to `utils.py`, etc.) * added license notice next to data ### v0.4.1 (2020-12-03) * added support for `h2o.estimators.*` ([#332](https://github.com/ModelOriented/DALEX/issues/332)) * added `tensorflow.python.keras.engine.functional.Functional` to the `tensorflow` list * updated the `plotly` dependency to `>=4.12.0` * code maintenance: `yhat`, `check_data` #### fixes * fixed `check_if_empty_fields()` used in loading the `Explainer` from a pickle file, since several checks were changed * fixed `plot()` method in `GroupFairnessClassification` as it omitted plotting a metric when `NaN` was present in metric ratios (result) * fixed `dragons` and `HR` datasets having `,` delimeter instead of `.`, which transformed numerical columns into categorical. * fixed representation of the `ShapWrapper` class (removed `_repr_html_` method) #### features * allow for `y` to be a `pandas.DataFrame` (converted) * allow for `data`, `y` to be a `H2OFrame` (converted) * added `label` parameter to all the relevant `dx.Explainer` methods, which overrides the default label in explanation's `result` * now using `GradientExplainer` for `tf.keras.engine.sequential.Sequential`, added proper warning when `shap_explainer_type` is `None` ([#366](https://github.com/ModelOriented/DALEX/issues/366)) #### defaults * unify verbose output of `Explainer` ### v0.4.0 (2020-11-17) * added new `arena` module, which adds the backend for Arena dashboard [@piotrpiatyszek](https://github.com/piotrpiatyszek) #### features * added new aliases to `dx.Explainer` methods ([#350](https://github.com/ModelOriented/DALEX/issues/350)) in `model_parts` it is `{'permutational': 'variable_importance', 'feature_importance': 'variable_importance'}`, in `model_profile` it is `{'pdp': 'partial', 'ale': 'accumulated'}` * added `Arena` object for dashboard backend. See https://github.com/ModelOriented/Arena * new `fairness` plot types: `stacked`, `radar`, `performance_and_fairness`, `heatmap`, `ceteris_paribus_cutoff` * upgraded `fairness_check()` ### v0.3.0 (2020-10-26) * added new `fairness` module, which will focus on bias detection, visualization and mitigation [@jakwisn](https://github.com/jakwisn) #### fixes * removed unnecessary warning when `precalculate=False and verbose=False` ([#340](https://github.com/ModelOriented/DALEX/issues/340)) #### features * added `model_fairness` method to the `Explainer`, which performs fairness explanation * added `GroupFairnessClassification` object, with the `plot` method having two types: `fairness_check` and `metric_scores` #### defaults * added the `N=50000` argument to `ResidualDiagnostics.plot`, which samples observations from the `result` parameter to omit performance issues when `smooth=True` ([#341](https://github.com/ModelOriented/DALEX/issues/341)) ### v0.2.2 (2020-09-21) * added support for `tensorflow.python.keras.engine.sequential.Sequential` and `tensorflow.python.keras.engine.training.Model` ([#326](https://github.com/ModelOriented/DALEX/issues/326)) * updated the `tqdm` dependency to `>=4.48.2`, `pandas` dependency to `>=1.1.2` and `numpy` dependency to `>=1.18.4` #### fixes * fixed the wrong order of `Explainer` verbose messages * fixed a bug that caused `model_info` parameter to be overwritten by the default values * fixed a bug occurring when the variable from `groups` was not of `str` type ([#327](https://github.com/ModelOriented/DALEX/issues/327)) * fixed `model_profile`: `variable_type='categorical'` not working when user passed `variables` parameter ([#329](https://github.com/ModelOriented/DALEX/issues/329)) + the reverse order of bars in `'categorical'` plots + (again) added `variable_splits_type` parameter to `model_profile` to specify how grid points shall be calculated ([#266](https://github.com/ModelOriented/DALEX/issues/266)) + allow for both `'quantile'` and `'quantiles'` types (alias) #### features * added informative error messages when importing optional dependencies ([#316](https://github.com/ModelOriented/DALEX/issues/316)) * allow for `data` and `y` to be `None` - added checks in `Explainer` methods #### defaults * wrong parameter name `title_x` changed to `y_title` in `CeterisParibus.plot` and `AggregatedProfiles.plot` ([#317](https://github.com/ModelOriented/DALEX/issues/317)) * now warning the user in `Explainer` when `predict_function` returns an error or doesn't return `numpy.ndarray (1d)` ([#325](https://github.com/ModelOriented/DALEX/issues/325)) ### v0.2.1 (2020-08-31) * updated the `pandas` dependency to `>=1.1.0` #### fixes * `ModelPerformance.plot` now uses a drwhy color palette * use `unique` method instead of `np.unique` in `variable_splits` ([#293](https://github.com/ModelOriented/DALEX/issues/293)) * `v0.2.0` didn't export new datasets * fixed a bug where `predict_parts(type='shap')` calculated wrong `contributions` ([#300](https://github.com/ModelOriented/DALEX/issues/300)) * `model_profile` uses observation mean instead of profile mean in `_yhat_` centering * fixed barplot baseline in categorical `model_profile` and `predict_profile` plots ([#297](https://github.com/ModelOriented/DALEX/issues/297)) * fixed `model_profile(type='accumulated')` giving wrong results (#[302](https://github.com/ModelOriented/DALEX/issues/302)) * vertical/horizontal lines in plots now end on the plot edges #### features * added new `type='shap_wrapper'` to `predict_parts` and `model_parts` methods, which returns a new `ShapWrapper` object. It contains the main result attribute (`shapley_values`) and the plot method (`force_plot` and `summary_plot` respectively). These come from the [shap](https://github.com/slundberg/shap) package * `Explainer.predict` method now accepts `numpy.ndarray` * added the `ResidualDiagnostics` object with a `plot` method * added `model_diagnostics` method to the `Explainer`, which performs residual diagnostics * added `predict_surrogate` method to the `Explainer`, which is a wrapper for the `lime` tabular explanation from the [lime](https://github.com/marcotcr/lime) package * added `model_surrogate` method to the `Explainer`, which creates a basic surrogate decision tree or linear model from the black-box model using the [scikit-learn](https://github.com/scikit-learn/scikit-learn) package * added a `_repr_html_` method to all of the explanation objects (it prints the `result` attribute) * added `dalex.__version__` * added informative error messages in `Explainer` methods when `y` is of wrong type ([#294](https://github.com/ModelOriented/DALEX/issues/294)) * `CeterisParibus.plot(variable_type='categorical')` now allows for multiple observations * new verbose checks for `model_type` * add `type` to `model_info` in `dump` and `dumps` for R compatibility ([#303](https://github.com/ModelOriented/DALEX/issues/303)) * `ModelPerformance.result` now has `label` as index #### defaults * removed `_grid_` column in `AggregatedProfiles.result` and `center` only works with `type=accumulated` * use `Pipeline._final_estimator` to extract `model_class` of the actual model * use `model._estimator_type` to extract `model_type` if possible ### v0.2.0 (2020-08-07) * major documentation update ([#270](https://github.com/ModelOriented/DALEX/issues/270)) * unified the order of function parameters #### fixes * `v0.1.9` had wrong `_original_` column in `predict_profile` * `vertical_spacing` acts as intended in `VariableImportance.plot` when `split='variable'` * `loss_function='auc'` now uses `loss_one_minus_auc` as this should be a descending measure * plots are now saved with the original height and width * `model_profile` now properly passes the `variables` parameter to `CeterisParibus` * `variables` parameter in `predict_profile` now can also be a string #### features * use `px.express` instead of core `plotly` to make `model_profile` and `predict_profile` plots; thus, enhance performance and scalability * added `verbose` parameter where `tqdm` is used to verbose progress bar * added `loss_one_minus_auc` function that can be used with `loss_function='1-auc'` in `model_parts` * added new example data sets: `apartments`, `dragons` and `hr` * added `color`, `opacity`, `title_x` parameters to `model_profile` and `predict_profile` plots ([#236](https://github.com/ModelOriented/DALEX/issues/236)), changed tooltips and legends ([#262](https://github.com/ModelOriented/DALEX/issues/262)) * added `geom='profiles'` parameter to `model_profile` plot and `raw_profiles` attribute to `AggregatedProfiles` * added `variable_splits_type` parameter to `predict_profile` to specify how grid points shall be calculated ([#266](https://github.com/ModelOriented/DALEX/issues/266)) * added `variable_splits_with_obs` parameter to `predict_profile` function to extend split points with observation variable values ([#269](https://github.com/ModelOriented/DALEX/issues/269)) * added `variable_splits` parameter to `model_profile` #### defaults * use different `loss_function` for classification and regression ([#248](https://github.com/ModelOriented/DALEX/issues/248)) * models that use `proba` yhats now get `model_type='classification'` if it's not specified * use uniform way of grid points calculation in `predict_profile` and `model_profile` (see `variable_splits_type` parameter) * add the variable values of `new_observation` to `variable_splits` in `predict_profile` (see `variable_splits_with_obs` parameter) * use `N=1000` in `model_parts` and `N=300` in `model_profile` to comply with the R version * `keep_raw_permutation` is now set to `False` instead of `None` in `model_parts` * `intercept` parameter in `model_profile` is now named `center` ### v0.1.9 (2020-07-01) * *feature:* added `random_state` parameter for `predict_parts(type='shap')` and `model_profile` for reproducible calculations * *fix:* fixed `random_state` parameter in `model_parts` * *feature:* multiprocessing added for: `model_profile`, `model_parts`, `predict_profile` and `predict_parts(type='shap')`, through the `processes` parameter * *fix:* significantly improved the speed of `accumulated` and `conditional` types in `model_profile` * *bugfix:* use [pd.api.types.is_numeric_dtype()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.types.is_numeric_dtype.html) instead of `np.issubdtype()` to cover more types; e.g. it caused errors with `string` type * *defaults:* use [pd.convert_dtypes()](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.convert_dtypes.html) on the result of `CeterisParibus` to fix variable dtypes and later allow for a concatenation without the dtype conversion * *fix:* `variables` parameter now can be a single `str` value * *fix:* number rounding in `predict_parts`, `model_parts` ([#245](https://github.com/ModelOriented/DALEX/issues/245)) * *fix:* CP calculations for models that take only variables as an input ### v0.1.8 (2020-05-28) * *bugfix:* `variable_splits` parameter now works correctly in `predict_profile` * *bugfix:* fix baseline for 3+ models in `AggregatedProfiles.plot` ([#234](https://github.com/ModelOriented/DALEX/issues/234)) * *printing:* now rounding numbers in `Explainer` messages * *fix:* minor checks fixes in `instance_level` * *bugfix:* `AggregatedProfiles.plot` now works with `groups` ### v0.1.7 (2020-05-10) * *feature:* parameter `N` in `model_profile` can be set to `None`, to select all observations * *input:* `groups` and `variable` parameters in `model_profile` can be: `str`, `list`, `numpy.ndarray`, `pandas.Series` * *fix:* `check_label` returned only a first letter * *bugfix:* removed the conversion of `all_variables` to `str` in `prepare_all_variables`, which caused an error in `model_profile` ([#214](https://github.com/ModelOriented/DALEX/issues/214)) * *defaults:* change numpy data variable names from numbers to strings ### v0.1.6 (2020-04-30) * *fix:* change `short_name` encoding in `fifa` dataset (utf8->ascii) * *fix:* remove `scipy` dependency * *defaults:* default `loss_root_mean_square` in model parts changed to `rmse` * *bugfix:* checks related to `new_observation` in `BreakDown, Shap, CeterisParibus` now work for multiple inputs ([#207](https://github.com/ModelOriented/DALEX/issues/207)) * *bugfix:* `CeterisParibus.fit` and `CeterisParibus.plot` now work for more types of `new_observation.index`, but won't work for a `bolean` type ([#211](https://github.com/ModelOriented/DALEX/issues/211)) ### v0.1.5 (2020-04-21) * *feature:* add `xgboost` package compatibility ([#188](https://github.com/ModelOriented/DALEX/issues/188)) * *feature:* added `model_class` parameter to `Explainer` to handle wrapped models * *feature:* `Exaplainer` attribute `model_info` remembers if parameters are default * *bugfix:* `variable_groups` parameter now works correctly in `model_parts` * *fix:* changed parameter order in `Explainer`: `model_type`, `model_info`, `colorize` * *documentation:* `model_parts` documentation is updated * *feature:* new `show` parameter in `plot` methods that (`if False`) returns `plotly Figure` ([#190](https://github.com/ModelOriented/DALEX/issues/190)) * *feature:* `load_fifa()` function which loads the preprocessed [players_20 dataset](https://www.kaggle.com/stefanoleone992/fifa-20-complete-player-dataset) * *fix:* `CeterisParibus.plot` tooltip ### v0.1.4 (2020-04-14) * *feature:* new `Explainer.residual` method which uses `residual_function` to calculate `residuals` * *feature:* new `dump` and `dumps` methods for saving `Explainer` in a binary form; `load` and `loads` methods for loading `Explainer` from binary form * *fix:* `Explainer` constructor verbose text * *bugfix:* `B:=B+1` - `Shap` now stores average results as `B=0` and path results as `B=1,2,...` * *bugfix:* `Explainer.model_performance` method uses `self.model_type` when `model_type` is `None` * *bugfix:* values in `BreakDown` and `Shap` are now rounded to 4 significant places ([#180](https://github.com/ModelOriented/DALEX/issues/180)) * *bugfix:* `Shap` by default uses `path='average'`, `sign` column is properly updated and bars in `plot` are sorted by `abs(contribution)` ### v0.1.3 (2020-04-10) * [release](https://medium.com/@ModelOriented/xai-in-python-with-dalex-4b173486aa92) of the `dalex` package * `Explainer` object with `predict`, `predict_parts`, `predict_profile`, `model_performance`, `model_parts` and `model_profile` methods * `BreakDown`, `Shap`, `CeterisParibus`, `ModelPerformance`, `VariableImportance` and `AggregatedProfiles` objects with a `plot` method * `load_titanic()` function which loads the `titanic_imputed` dataset


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl dalex-1.6.0:

    pip install dalex-1.6.0.whl


نصب پکیج tar.gz dalex-1.6.0:

    pip install dalex-1.6.0.tar.gz