معرفی شرکت ها


daffy-0.6.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Function decorators for Pandas Dataframe column name and data type validation
ویژگی مقدار
سیستم عامل -
نام فایل daffy-0.6.0
نام daffy
نسخه کتابخانه 0.6.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Janne Sinivirta
ایمیل نویسنده janne.sinivirta@gmail.com
آدرس صفحه اصلی https://github.com/fourkind/daffy
آدرس اینترنتی https://pypi.org/project/daffy/
مجوز MIT
# DAFFY DataFrame Column Validator ![PyPI](https://img.shields.io/pypi/v/daffy) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/daffy) ![test](https://github.com/fourkind/daffy/workflows/test/badge.svg) [![codecov](https://codecov.io/gh/fourkind/daffy/branch/master/graph/badge.svg?token=2FYBMT65A6)](https://codecov.io/gh/fourkind/daffy) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ## Description In projects using Pandas, it's very common to have functions that take Pandas DataFrames as input or produce them as output. It's hard to figure out quickly what these DataFrames contain. This library offers simple decorators to annotate your functions so that they document themselves and that documentation is kept up-to-date by validating the input and output on runtime. For example, ```python @df_in(columns=["Brand", "Price"]) # the function expects a DataFrame as input parameter with columns Brand and Price @df_out(columns=["Brand", "Price"]) # the function will return a DataFrame with columns Brand and Price def filter_cars(car_df): # before this code is executed, the input DataFrame is validated according to the above decorator # filter some cars.. return filtered_cars_df ``` ## Table of Contents * [Installation](#installation) * [Usage](#usage) * [Contributing](#contributing) * [Tests](#tests) * [License](#license) * [Changelog](#changelog) ## Installation Install with your favorite Python dependency manager like ```sh pip install daffy ``` ## Usage Start by importing the needed decorators: ```python from daffy import df_in, df_out ``` To check a DataFrame input to a function, annotate the function with `@df_in`. For example the following function expects to get a DataFrame with columns `Brand` and `Price`: ```python @df_in(columns=["Brand", "Price"]) def process_cars(car_df): # do stuff with cars ``` If your function takes multiple arguments, specify the field to be checked with it's `name`: ```python @df_in(name="car_df", columns=["Brand", "Price"]) def process_cars(year, style, car_df): # do stuff with cars ``` You can also check columns of multiple arguments if you specify the names ```python @df_in(name="car_df", columns=["Brand", "Price"]) @df_in(name="brand_df", columns=["Brand", "BrandName"]) def process_cars(car_df, brand_df): # do stuff with cars ``` To check that a function returns a DataFrame with specific columns, use `@df_out` decorator: ```python @df_out(columns=["Brand", "Price"]) def get_all_cars(): # get those cars return all_cars_df ``` In case one of the listed columns is missing from the DataFrame, a helpful assertion error is thrown: ```python AssertionError("Column Price missing from DataFrame. Got columns: ['Brand']") ``` To check both input and output, just use both annotations on the same function: ```python @df_in(columns=["Brand", "Price"]) @df_out(columns=["Brand", "Price"]) def filter_cars(car_df): # filter some cars return filtered_cars_df ``` If you want to also check the data types of each column, you can replace the column array: ```python columns=["Brand", "Price"] ``` with a dict: ```python columns={"Brand": "object", "Price": "int64"} ``` This will not only check that the specified columns are found from the DataFrame but also that their `dtype` is the expected. In case of a wrong `dtype`, an error message similar to following will explain the mismatch: ``` AssertionError("Column Price has wrong dtype. Was int64, expected float64") ``` You can enable strict-mode for both `@df_in` and `@df_out`. This will raise an error if the DataFrame contains columns not defined in the annotation: ```python @df_in(columns=["Brand"], strict=True) def process_cars(car_df): # do stuff with cars ``` will, when `car_df` contains columns `["Brand", "Price"]` raise an error: ``` AssertionError: DataFrame contained unexpected column(s): Price ``` To quickly check what the incoming and outgoing dataframes contain, you can add a `@df_log` annotation to the function. For example adding `@df_log` to the above `filter_cars` function will product log lines: ``` Function filter_cars parameters contained a DataFrame: columns: ['Brand', 'Price'] Function filter_cars returned a DataFrame: columns: ['Brand', 'Price'] ``` or with `@df_log(include_dtypes=True)` you get: ``` Function filter_cars parameters contained a DataFrame: columns: ['Brand', 'Price'] with dtypes ['object', 'int64'] Function filter_cars returned a DataFrame: columns: ['Brand', 'Price'] with dtypes ['object', 'int64'] ``` ## Contributing Contributions are accepted. Include tests in PR's. ## Development To run the tests, clone the repository, install dependencies with Poetry and run tests with PyTest: ```sh poetry install poetry shell pytest ``` To enable linting on each commit, run `pre-commit install`. After that, your every commit will be checked with `isort`, `black` and `flake8`. ## License MIT ## Changelog ### 0.5.0 - Added `strict` parameter for `@df_in` and `@df_out` ### 0.4.2 - Added docstrings for the decorators - Fix import of `@df_log` ### 0.4.1 - Add `include_dtypes` parameter for `@df_log`. - Fix handling of empty signature with `@df_in`. ### 0.4.0 - Added `@df_log` for logging. - Improved assertion messages. ### 0.3.0 - Added type hints. ### 0.2.1 - Added Pypi classifiers. ### 0.2.0 - Fixed decorator usage. - Added functools wraps. ### 0.1.0 - Initial release.


نیازمندی

مقدار نام
>=1.5.1,<2.0.0 pandas


زبان مورد نیاز

مقدار نام
>=3.8,<4.0.0 Python


نحوه نصب


نصب پکیج whl daffy-0.6.0:

    pip install daffy-0.6.0.whl


نصب پکیج tar.gz daffy-0.6.0:

    pip install daffy-0.6.0.tar.gz