معرفی شرکت ها


dace-0.9.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Data-Centric Parallel Programming Framework
ویژگی مقدار
سیستم عامل -
نام فایل dace-0.9.5
نام dace
نسخه کتابخانه 0.9.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده SPCL @ ETH Zurich
ایمیل نویسنده talbn@inf.ethz.ch
آدرس صفحه اصلی https://github.com/spcl/dace
آدرس اینترنتی https://pypi.org/project/dace/
مجوز -
[![General Tests](https://github.com/spcl/dace/actions/workflows/general-ci.yml/badge.svg)](https://github.com/spcl/dace/actions/workflows/general-ci.yml) [![GPU Tests](https://github.com/spcl/dace/actions/workflows/gpu-ci.yml/badge.svg)](https://github.com/spcl/dace/actions/workflows/gpu-ci.yml) [![FPGA Tests](https://github.com/spcl/dace/actions/workflows/fpga-ci.yml/badge.svg)](https://github.com/spcl/dace/actions/workflows/fpga-ci.yml) [![Documentation Status](https://readthedocs.org/projects/spcldace/badge/?version=latest)](https://spcldace.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/dace.svg)](https://badge.fury.io/py/dace) [![codecov](https://codecov.io/gh/spcl/dace/branch/master/graph/badge.svg)](https://codecov.io/gh/spcl/dace) ![D](dace.svg)aCe - Data-Centric Parallel Programming ===================================================== _Decoupling domain science from performance optimization._ DaCe is a [fast](https://nbviewer.org/github/spcl/dace/blob/master/tutorials/benchmarking.ipynb) parallel programming framework that takes code in Python/NumPy and other programming languages, and maps it to high-performance **CPU, GPU, and FPGA** programs, which can be optimized to achieve state-of-the-art. Internally, DaCe uses the Stateful DataFlow multiGraph (SDFG) *data-centric intermediate representation*: A transformable, interactive representation of code based on data movement. Since the input code and the SDFG are separate, it is possible to optimize a program without changing its source, so that it stays readable. On the other hand, transformations are customizable and user-extensible, so they can be written once and reused in many applications. With data-centric parallel programming, we enable **direct knowledge transfer** of performance optimization, regardless of the application or the target processor. DaCe generates high-performance programs for: * Multi-core CPUs (tested on Intel, IBM POWER9, and ARM with SVE) * NVIDIA GPUs and AMD GPUs (with HIP) * Xilinx and Intel FPGAs DaCe can be written inline in Python and transformed in the command-line/Jupyter Notebooks or SDFGs can be interactively modified using our [Visual Studio Code extension](https://marketplace.visualstudio.com/items?itemName=phschaad.sdfv). ## [For more information, see the documentation](https://spcldace.readthedocs.io/en/latest/) Quick Start ----------- Install DaCe with pip: `pip install dace` Having issues? See our full [Installation and Troubleshooting Guide](https://spcldace.readthedocs.io/en/latest/setup/installation.html). Using DaCe in Python is as simple as adding a `@dace` decorator: ```python import dace import numpy as np @dace def myprogram(a): for i in range(a.shape[0]): a[i] += i return np.sum(a) ``` Calling `myprogram` with any NumPy array or GPU array (e.g., PyTorch, Numba, CuPy) will generate data-centric code, compile, and run it. From here on out, you can _optimize_ (interactively or automatically), _instrument_, and _distribute_ your code. The code creates a shared library (DLL/SO file) that can readily be used in any C ABI compatible language (C/C++, FORTRAN, etc.). For more information on how to use DaCe, see the [samples](samples) or tutorials below: * [Getting Started](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/getting_started.ipynb) * [Benchmarks, Instrumentation, and Performance Comparison with Other Python Compilers](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/benchmarking.ipynb) * [Explicit Dataflow in Python](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/explicit.ipynb) * [NumPy API Reference](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/numpy_frontend.ipynb) * [SDFG API](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/sdfg_api.ipynb) * [Using and Creating Transformations](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/transformations.ipynb) * [Extending the Code Generator](https://nbviewer.jupyter.org/github/spcl/dace/blob/master/tutorials/codegen.ipynb) Publication ----------- The paper for the SDFG IR can be found [here](http://www.arxiv.org/abs/1902.10345). Other DaCe-related publications are available on our [website](http://spcl.inf.ethz.ch/dace). If you use DaCe, cite us: ```bibtex @inproceedings{dace, author = {Ben-Nun, Tal and de~Fine~Licht, Johannes and Ziogas, Alexandros Nikolaos and Schneider, Timo and Hoefler, Torsten}, title = {Stateful Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures}, year = {2019}, booktitle = {Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis}, series = {SC '19} } ``` Contributing ------------ DaCe is an open-source project. We are happy to accept Pull Requests with your contributions! Please follow the [contribution guidelines](CONTRIBUTING.md) before submitting a pull request. License ------- DaCe is published under the New BSD license, see [LICENSE](LICENSE).


زبان مورد نیاز

مقدار نام
>=3.6, <3.11 Python


نحوه نصب


نصب پکیج whl dace-0.9.5:

    pip install dace-0.9.5.whl


نصب پکیج tar.gz dace-0.9.5:

    pip install dace-0.9.5.tar.gz