معرفی شرکت ها


daccuracy-2022.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Detection and Segmentation Accuracy Measures
ویژگی مقدار
سیستم عامل -
نام فایل daccuracy-2022.9
نام daccuracy
نسخه کتابخانه 2022.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Eric Debreuve
ایمیل نویسنده eric.debreuve@univ-cotedazur.fr
آدرس صفحه اصلی https://gitlab.inria.fr/edebreuv/daccuracy
آدرس اینترنتی https://pypi.org/project/daccuracy/
مجوز CeCILL-2.1
======================================================= DAccuracy: Detection and Segmentation Accuracy Measures ======================================================= .. sectnum:: :suffix: - Brief Description ================= ``DAccuracy`` (Detection Accuracy) allows to compute - some accuracy measures - on an N-dimensional detection or segmentation image - when the ground-truth is available as a `CSV file <https://en.wikipedia.org/wiki/Comma-separated_values>`_, an image, or a `Numpy <https://numpy.org/>`_ file. It works in 3 contexts: - one-to-one: single ground-truth, single detection image; - one-to-many: unique ground-truth, several detection images (typically obtained by various methods); - many-to-many: set of "(ground-truth, detection image)" pairs. .. note:: **With 8-bit image formats**, ground-truth and detection **cannot contain more than 255 objects**. If they do, they could be saved using higher-depth formats. However, it is recommended to save them in `NPY <https://numpy.org/doc/stable/reference/generated/numpy.save.html>`_ or `NPZ <https://numpy.org/doc/stable/reference/generated/numpy.savez_compressed.html>`_ Numpy formats instead. Note that using Numpy arrays does not remove the limit on the number of objects, but with the `uint64 dtype <https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint64>`_, the limit goes up to close to 2e19 objects. See a note below as to why ground-truth and detection are requested to be labeled (which raises this issue), as opposed to binary (which a priori would not). Example console output (accuracy measures can also be written to a CSV file):: Ground truth = ground-truth.csv Detection = detection.png N ground truths = 55 N detections = 47 True_positive = 43 False_positive = 4 False_negative = 12 Precision = 0.9148936170212766 Recall = 0.7818181818181819 F1_score = 0.8431372549019609 Froc_sample = (4, 0.7818181818181819) Check_tp_fn_equal_gt = 55 Check_tp_fp_equal_dn = 47 Installation ============ The ``DAccuracy`` project is published on the `Python Package Index (PyPI) <https://pypi.org>`_ at: `https://pypi.org/project/daccuracy <https://pypi.org/project/daccuracy>`_. It requires version 3.8, or newer, of the interpreter. It should be installable from Python distribution platforms or Integrated Development Environments (IDEs). Otherwise, it can be installed from a command-line console: - For all users, after acquiring administrative rights: - First installation: ``pip install daccuracy`` - Installation update: ``pip install --upgrade daccuracy`` - For the current user (no administrative rights required): - First installation: ``pip install --user daccuracy`` - Installation update: ``pip install --user --upgrade daccuracy`` Documentation ============= After installation, the ``daccuracy`` command should be available from a command-line console. The usage help is obtained with ``daccuracy --help`` (see output below). Input Formats ------------- The ground-truth can be specified through a CSV file, a labeled image, or a labeled Numpy array. The detection can be specified through a labeled image or a labeled Numpy array. A labeled image or Numpy array must have the background labeled with zero, with the objects labeled consecutively from 1. .. note:: The input images are requested to be labeled (as opposed to binary: zero for the background and 1 for any of the objects) in order to be able to deal with tangent objects. With a binary image, there is no way to distinguish a unique object from a set of tangent objects. In CSV format, the ground-truth must be specified as one row per object where ``n`` columns (the first ``n`` ones by default) correspond to the row, column, and remaining ``n-2`` coordinates of the object center. Note that these coordinates can have floating-point values (as opposed to being restricted to integers). See the usage help below for details. Example CSV:: 1.2, 2.3 3.4, 4.5 This specifies two ground-truth object centers in dimension 2, the first one being at row 1.2 and column 2.3. Alternatively, the center coordinates can be passed in x/y coordinate system. See the usage help below for details. Accuracy Measures ----------------- The following accuracy measures are computed: - Number of ground-truth objects - Number of detected objects - Number of true positives, false positives, and false negatives - Precision, recall, and F1 score - Free-response Receiver Operating Characteristic (FROC) curve sample: named ``froc_sample`` and corresponding to the tuple (false positives, true positive rate) - Values for measure correctness checking: ``check_tp_fn_equal_gt`` (true_positives + false_negatives ?=? ground-truths) and ``check_tp_fp_equal_dn`` (true_positives + false_positives ?=? detections) Additionally, if the ground-truth has been passed as an image or a Numpy array, the mean, standard deviation, minimum, and maximum of the following measures are also computed: - Ground-truth/detection overlap (as a percentage with respect to the smaller region among ground-truth and detection) - Ground-truth/detection Jaccard index - Pixel-wise precision, recall, and F1 score Output Formats -------------- See usage help below. Usage Help (``daccuracy --help``) --------------------------------- Usage Help:: usage: daccuracy [-h] --gt ground_truth --dn detection [--shifts Dn_shift Dn_shift] [-e] [-t TOLERANCE] [-f {csv,nev}] [-o Output file] [-s] 3 modes: - one-to-one: one ground-truth (csv, image, or Numpy array) vs. one detection (image or Numpy array) - one-to-many: one ground-truth vs. several detections (folder of detections) - many-to-many: several ground-truths (folder of ground-truths) vs. corresponding detections (folder of detections) In many-to-many mode, each detection file must have a counterpart ground-truth file with the same name, but not necessarily the same extension. With 8-bit image formats, ground-truth and detection cannot contain more than 255 objects. If they do, they could be saved using higher-depth formats. However, it is recommended to save them in NPY or NPZ Numpy formats instead. optional arguments: -h, --help show this help message and exit --gt ground_truth Ground-truth CSV file of centers or labeled image or labeled Numpy array, or ground-truth folder; If CSV, --rAcB (or --xAyB) can be passed additionally to indicate that columns A and B contain the centers' rows and cols, respectively (or x's and y's in x/y mode). Columns must be specified as (possibly sequences of) uppercase letters, as is usual in spreadsheet applications. For ground-truths of dimension "n" higher than 2, the symbol "+" must be used for the remaining "n-2" dimensions. For example, --rAcB+C+D in dimension 4. --relabel-gt {seq,full} If present, this option instructs to relabel the ground-truth sequentially. --dn detection Detection labeled image or labeled Numpy array, or detection folder. --relabel-gt {seq,full} If present, this option instructs to relabel the ground-truth sequentially. --shifts Dn_shift [Dn_shift ...] Vertical (row), horizontal (col), and higher dimension shifts to apply to detection. Default: all zeroes. -e, --exclude-border If present, this option instructs to discard objects touching image border, both in ground-truth and detection. -t TOLERANCE, --tol TOLERANCE, --tolerance TOLERANCE Max ground-truth-to-detection distance to count as a hit (meant to be used when ground-truth is a CSV file of centers). Default: zero. -f {csv,nev}, --format {csv,nev} nev: one "Name = Value"-row per measure; csv: one CSV-row per ground-truth/detection pairs. Default: "nev". -o Output file CSV file to store the computed measures or "-" for console output. Default: console output. -s, --show-image If present, this option instructs to show an image superimposing ground-truth onto detection. It is actually done only for 2-dimensional images. Thanks ====== The project is developed with `PyCharm Community <https://www.jetbrains.com/pycharm>`_. The development relies on several open-source packages (see ``install_requires`` in ``setup.py``). The code is formatted by `Black <https://github.com/psf/black>`_, *The Uncompromising Code Formatter*. The imports are ordered by `isort <https://github.com/timothycrosley/isort>`_... *your imports, so you don't have to*.


نیازمندی

مقدار نام
- dominate
- flask
- flask-bootstrap4
- flask-session
- flask-uploads
- flask-wtf
- matplotlib
- numpy
- scikit-image
- scipy
- werkzeug
- wtforms


زبان مورد نیاز

مقدار نام
>=3.9 Python


نحوه نصب


نصب پکیج whl daccuracy-2022.9:

    pip install daccuracy-2022.9.whl


نصب پکیج tar.gz daccuracy-2022.9:

    pip install daccuracy-2022.9.tar.gz