معرفی شرکت ها


dSalmon-0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

dSalmon is a framework for analyzing data streams
ویژگی مقدار
سیستم عامل -
نام فایل dSalmon-0.1
نام dSalmon
نسخه کتابخانه 0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alexander Hartl
ایمیل نویسنده alexander.hartl@tuwien.ac.at
آدرس صفحه اصلی https://github.com/CN-TU/dSalmon
آدرس اینترنتی https://pypi.org/project/dSalmon/
مجوز LGPL-3.0
dSalmon ======= .. image:: https://img.shields.io/github/license/CN-TU/dSalmon.svg :target: https://github.com/CN-TU/dSalmon/blob/master/LICENSE :alt: License .. image:: https://readthedocs.org/projects/dsalmon/badge/?version=latest :target: https://dsalmon.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status dSalmon (**D**\ ata **S**\ tream **A**\ nalysis A\ **l**\ gorith\ **m**\ s f\ **o**\ r the Impatie\ **n**\ t) is a framework for analyzing data streams. Implementation of the core algorithms is done in C++, focusing on superior processing speed and allowing even vast amounts of data to be processed. Python bindings are provided to allow seamless integration in data science development. Installation ------------ dSalmon can be installed using ``pip`` by running .. code-block:: sh pip3 install git+https://github.com/CN-TU/dSalmon Outlier Detectors ----------------- dSalmon provides several algorithms for detecting outliers in data streams. Usage is easiest using the Python interface, which provides an interface similar to the algorithms from scikit-learn. The following example performs k-nearest neighbor outlier detection with a window size of 100 samples. .. code-block:: python from dSalmon import outlier import pandas X = pandas.read_csv('my_dataset.csv') detector = outlier.SWKNN(window=100,k=5) outlier_scores = detector.fit_predict(X) print ('Outlier scores: ', outlier_scores) Individual rows of the passed data are processed sequentially. Hence, while being substantially faster, the above code provides similar results as the following example. .. code-block:: python from dSalmon import outlier import pandas X = pandas.read_csv('my_dataset.csv') detector = outlier.SWKNN(window=100,k=5) outlier_scores = [ detector.fit_predict(X.iloc[i,:]) for i in range(len(X)) ] print ('Outlier scores: ', outlier_scores) M-Tree Usage ------------ dSalmon uses an M-Tree for several of its algorithms. An M-Tree is a spatial indexing data structure for metric spaces, allowing fast nearest-neighbor and range queries. The benefit of an M-Tree compared to, e.g., a KD-Tree or Ball-Tree is that insertion, updating and removal of points is fast after having built the tree. For the development of custom algorithms, an M-Tree interface is provided for Python. A point within a tree can be accessed either via ``tree[k]`` using the point's key ``k``, or via ``tree.ix[i]`` using the point's index ``i``. Keys can be arbitrary integers and are returned by ``insert()``, ``knn()`` and ``neighbors()``. Indices are integers in the range ``0...len(tree)``, sorted according to the points' keys in ascending order. KNN queries can be performed using the ``knn()`` function and range queries can be performed using the ``neighbors()`` function. The following example shows how to modify points within a tree and how to find nearest neighbors. .. code-block:: python from dSalmon.trees import MTree import numpy as np tree = MTree() # insert a point [1,2,3,4] with key 5 tree[5] = [1,2,3,4] # insert some random test data X = np.random.rand(1000,4) inserted_keys = tree.insert(X) # delete every second point del tree.ix[::2] # Set the coordinates of the point with the lowest key tree.ix[0] = [0,0,0,0] # find the 3 nearest neighbors to [0.5, 0.5, 0.5, 0.5] neighbor_keys, neighbor_distances, _ = tree.knn([.5,.5,.5,.5], k=3) print ('Neighbor keys:', neighbor_keys) print ('Neighbor distances:', neighbor_distances) # find all neighbors to [0.5, 0.5, 0.5, 0.5] within a radius of 0.2 neighbor_keys, neighbor_distances, _ = tree.neighbors([.5,.5,.5,.5], radius=0.2) print ('Neighbor keys:', neighbor_keys) print ('Neighbor distances:', neighbor_distances) Extending dSalmon ----------------- dSalmon uses `SWIG <http://www.swig.org/>`_ for generating wrapper code for the C++ core algorithms and instantiates single and double precision floating point variants of each algorithm. Architecture ^^^^^^^^^^^^ The ``cpp`` folder contains the code for the C++ core algorithms, which might be used directly by C++ projects. When using dSalmon from Python, the C++ algorithms are wrapped by the interfaces in the SWIG folder. These wrapper functions are translated to a Python interface and have the main purpose of providing an interface which can easily be parsed by SWIG. Finally, the ``python`` folder contains the Python interface invoking the Python interface provided by SWIG. Rebuilding ^^^^^^^^^^ When adding new algorithms or modifying the interface, the SWIG wrappers have to be rebuilt. To this end, SWIG has to be installed and a ``pip`` package can be created and installed using .. code-block:: sh make && pip3 install dSalmon.tar.xz


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl dSalmon-0.1:

    pip install dSalmon-0.1.whl


نصب پکیج tar.gz dSalmon-0.1:

    pip install dSalmon-0.1.tar.gz