معرفی شرکت ها


cytomulate-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Accurate and Efficient Simulation of CyTOF data
ویژگی مقدار
سیستم عامل -
نام فایل cytomulate-0.1.0
نام cytomulate
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yuqiu Yang, Kevin Wang, Tao Wang, Sherry Wang
ایمیل نویسنده yuqiuy@smu.edu, kevinwang@smu.edu, Tao.Wang@UTSouthwestern.edu, swang@smu.edu
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/cytomulate/
مجوز -
![Logo](/assets/cytomulate.jpg) # cytomulate > A simulation package for Cytometry by Time-of-Flight (CyTOF) [![forthebadge](https://forthebadge.com/images/badges/open-source.svg)](https://forthebadge.com) [![forthebadge](https://forthebadge.com/images/badges/made-with-python.svg)](https://forthebadge.com) | Branch | Release | CI/CD | Documentation | Code Coverage | | --- | --- | --- | --- | --- | | main | ![Badge1](https://img.shields.io/badge/Version-v0.1.0-success) | ![Tests](https://github.com/kevin931/cytomulate/actions/workflows/ci.yml/badge.svg?branch=main) | [![Documentation Status](https://readthedocs.org/projects/cytomulate/badge/?version=dev)](https://cytomulate.readthedocs.io/en/main/?badge=main) | [![codecov](https://codecov.io/gh/kevin931/cytomulate/branch/dev/graph/badge.svg?token=F5H0QTXGMR)](https://codecov.io/gh/kevin931/cytomulate) | | dev | ![Badge1](https://img.shields.io/badge/Version-v0.1.0-success) |![Tests](https://github.com/kevin931/cytomulate/actions/workflows/ci.yml/badge.svg?branch=dev) | [![Documentation Status](https://readthedocs.org/projects/cytomulate/badge/?version=dev)](https://cytomulate.readthedocs.io/en/dev/?badge=dev) | [![codecov](https://codecov.io/gh/kevin931/cytomulate/branch/dev/graph/badge.svg?token=F5H0QTXGMR)](https://codecov.io/gh/kevin931/cytomulate) | ## Installation You can easily install ``cytomulate`` from either ``PyPI`` or ``conda``. For the former, use the following command: ```shell pip install cytomulate ``` Or if you are using a conda environment, you can use the following command: ```shell conda install -c normalizingflow cytomulate ``` If you wish to use ``PyCytoData``, you can install separately with more instructions [here](https://cytomulate.readthedocs.io/en/dev/installation.html). ## Examples We have two modes: **Creation Mode** and **Emulation Mode**. The former is probabilistic-model based simulation without the need of datasets; the latter is based on existing datasets to match as much of the existing features as possible. Here, we give two quick examples of how they work. ### Creation Mode To create your datasets, you can run the following: ```python >>> from cytomulate import CreationCytofData >>> cytof_data = CreationCytofData() >>> cytof_data.initialize_cell_types() >>> expression_matrices, labels, _, _ = cytof_data.sample(n_samples = 1000) ``` The ``expression_matrices`` is a dictionary that contains the expression matrix from each sample. Correspondingly, ``labels`` is a dictionary that contains their cell types. ### Emulation Mode This is a little bit more involved because we need existing data! If you already have your data, congratulations, you are good to go! For this demonstration, we use ``PyCytoData`` to load some example datasets instead (Of course, you will need to install [PyCytoData](https://pycytodata.readthedocs.io/en/latest/index.html) first if you wish to use it): ```python >>> from cytomulate import EmulationCytoData >>> from PyCytoData import DataLoader >>> exprs = DataLoader.load_dataset(dataset="levine13") >>> exprs.preprocess(arcsinh=True) >>> cytof_data = EmulationCytofData() >>> cytof_data.initialize_cell_types(expression_matrix=exprs.expression_matrix, ... labels=exprs.cell_types) >>> expression_matrices, labels, _, _ = cytof_data.sample(n_samples = 1000) ``` This is it! ### Working with PyCytoData ![PyCytoData](/assets/pycytodata.jpg) We're fully compatible with ``PyCytoData``! As you've seen above, you can use ``PyCytoData`` to download datasets! If you're familiar with that interface and in love with its easy workflow, you can have ``cytomulate`` output a ``PyCytoData`` object as well: ```python >>> from cytomulate import CreationCytofData >>> cytof_data = CreationCytofData() >>> cytof_data.initialize_cell_types() >>> simulation_data = cytof_data.sample_to_pycytodata(n_samples = 1000) ``` This will allow you to use all the downstream capabilities of ``PyCytoData``. ### Command-Line Interface (CLI) If you prefer to use cytomulate from the command-line, you've got that option as well! One **caveat** is that this mode requires ``PyCytoData`` to be installed. To run the Creation Mode, you can do: ```shell python -m cytomulate \ --creation \ --n_cells 1000 \ -o <your_dir_here> ``` To run the emulation mode, you can run the following: ```shell python -m cytomulate \ --emulation \ --n_cells 1000 \ -o <your_dir_here> \ --exprs <you_path_to_exprssion_matrix> \ --cell_types <you_path_to_cell_types> ``` Of course, we have much more customization options! For more details, read our [tutorial here](https://cytomulate.readthedocs.io/en/dev/tutorial/cli.html). ## Documentation For more detailed documentation on ``cytomulate``, please visit our [website](https://cytomulate.readthedocs.io/)! You will find detailed tutorials, guidelines, development guides, etc. Our documentation is built automatically on the cloud! If you wish to build locally, check our detailed guide [here](https://cytomulate.readthedocs.io/en/latest/change/build.html)! ## Latest Release: v0.1.0 Our **FIRST OFFICIAL RELEASE** is here! From now on, all our releases will be supported with our standard support cycle. Here you will find our release notes. ### Changes and New Features - Added Command-Line Interface with support for complex simulations - Improved docstrings - Improved documentations with tutorials ### From Pre-release These are listed for documetation reasons for the first official release. - Support for ``Emulation Mode`` and ``Creation Mode`` - Support for complex simulations - Availability on ``PyPI`` and ``conda`` ## References If you are cytomulating in your workflow, citing [our paper](https://doi.org/10.1101/2022.06.14.496200) is appreciated: ``` @article {Yang2022.06.14.496200, author = {Yang, Yuqiu and Wang, Kaiwen and Lu, Zeyu and Wang, Tao and Wang, Xinlei}, title = {Cytomulate: Accurate and Efficient Simulation of CyTOF data}, elocation-id = {2022.06.14.496200}, year = {2022}, doi = {10.1101/2022.06.14.496200}, publisher = {Cold Spring Harbor Laboratory}, URL = {https://www.biorxiv.org/content/early/2022/06/16/2022.06.14.496200}, eprint = {https://www.biorxiv.org/content/early/2022/06/16/2022.06.14.496200.full.pdf}, journal = {bioRxiv} } ```


نیازمندی

مقدار نام
- numpy
- scipy
- scikit-learn
- networkx
- matplotlib
- tqdm


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl cytomulate-0.1.0:

    pip install cytomulate-0.1.0.whl


نصب پکیج tar.gz cytomulate-0.1.0:

    pip install cytomulate-0.1.0.tar.gz