معرفی شرکت ها


cytolysis-0.0.9b0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An API to analyze cytosim simulations
ویژگی مقدار
سیستم عامل -
نام فایل cytolysis-0.0.9b0
نام cytolysis
نسخه کتابخانه 0.0.9b0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Serge Dmitrieff
ایمیل نویسنده -
آدرس صفحه اصلی https://gitlab.com/SergeDmi/cytosim_analysis
آدرس اینترنتی https://pypi.org/project/cytolysis/
مجوز -
# Cytolysis A python module to facilitate the automatic analysis cytosim simulations. By itself, it does not include many analysis functions but mostly an API. ## Installation ```bash pip3 install cytolysis ``` ## Requirements Requires Python3 and modules numpy, pandas. To visualize the simulation in iPython (Jupyter Notebook), you should install [ipyvolume](https://ipyvolume.readthedocs.io/en/latest/install.html) : ```bash conda install -c conda-forge ipyvolume ``` ## Practical examples We provide several examples where we analyze the result of a simulation for an example [config file](example_data/example.cym). This simulation has two asters of microtubules brought to the center by the rigidity of the microtubules and by the activity of dyneins. ![](examples/example.jpg) An example counting the number of fiber points for each filament, and at each time: ```bash python3 examples/example_fibers.py ``` An example where we compute the fiber bending energy as a function of time ```bash python3 examples/example_fiber_curvature.py ``` We can also analyze any cytosim class that can be reported, by creating custom objects. For example, this is done here for solids and spaces : ```bash python3 examples/example_solid.py ``` Several ipython notebooks are also available in the notebook folder. ## Interface (examples) Import the module : ```python from cytolysis import cytosim_analysis as ana ``` The main class is *Simulation*, a list of time frames. Create an instance of a simulation analysis via : ```python microtubule_reports={'points' : 'fiber_points.txt' } simul = ana.Simulation(reports={'microtubule': microtubule_reports}, config='config.cym') ``` You can specify analysis functions for the different simulation objects, specifying by object name : ```python def count_points(fiber): return fiber.shape[0] def count_fibers(frame): return len(frame.fibers) analyzer={} analyzer['microtubule'] = {'pts_number': count_points} analyzer['frame'] = {'fib_number': count_fibers} ``` You can then run the analysis : ```python simul.make_analysis(analyzer=analyzer) ``` The analysis of objects is stored as pandas dataframes in the frames. For exemple, the analysis of microtubules for frame *5* is stored in : ```python simul[5].analysis['microtubule'] ``` Similarly, the analysis for couples 'arp_2_3' at frame 10 is stored in : ```python simul[10].analysis['arp_2_3'] ``` Simul is a set of frames, and the results of the analysis of all frames can be accessed in : ```python simul.frames_analysis ``` While a global analysis of the simulation is available in : ```python simul.analysis ``` The module contains a function to export analysis dataframes into csv files : ```python ana.export_analysis(simul.frames_analysis, 'frames.csv') ``` There is also experimental support for showing the system in 3D in notebooks : ```python simul.show(frame_number) ``` ## Components ### Simulation The class *Simulation* is a set of *frames*, instances of the class [Frame](#frame). Input arguments : - reports : a dictionary of dictionaries of pathes to report files. - options : a dictionary of dictionaries of options. - config : path to the config file - dim : dimensionality of the simulation (by default, 3) Simulation has a method *make_analysis* to perform the analysis. This takes as option *analyzer*, a dictionary of dictionaries of analysis functions. *simulation.make_analysis* performs the analysis specified in *analyzer["simulation"]*, and the result is stored in *simulation.analysis*. As a set of frames , simulation implements *simulation.analyze(frame, analyzer=..., ... )* (see [Object_set](#object_set)). This performs the analysis specified in *analyzer['frame']*. The results are stored in *simulation.frames_analysis* ### Frame Each frame contains several types of dictionaries of object_sets. Each dictionary is of the type : { name : [object_set](#object_set) }. For instance, if fibers have been loaded, they are available in *frame.objects["fibers"]*. Once the analysis has been performed, the analysis results are stored in : - *frame.analysis[object_type]*, e.g. *frame.analysis["fibers"]*. Frame implements the analysis method *frame.make_analysis(...)* that calls the *object_set.analyze(object, ...)* method of all object sets. ### Object_set Object set is a class derived from list. *Fibers_set* and *Couples_set* are derived from *Object_set*. Input arguments : - *name* : name of the object (e.g. "microtubule") - *type* : type of the object (e.g. "fiber") Optional input arguments : - *config* : the pile read from the configuration file - *build* : a function to build the object set from the reports Beyond the initialization (*__init__*) method, object set need to implement the methods : - *object_set.analyze(object, ... )* : a function that analyzes *object*, a given item from the object set - *object_set.type* : object type - *object_set.name* : object name - *object_set.id* : object id (a number) - *object_set.properties* : a dictionary of properties read from the config file - *object_set.show* : a way to plot the object set in 3D using iPyVolume ### Analysis All the analysis results (*simulation.analysis*, *frame.analysis["fibers"]*, etc.) are stored as Pandas dataframes and, by default, exported as csv files. Examples: - *frame.analysis["fiber"][fiber_name]* is a dataframe with as many rows as there are fibers. - *simulation.frame_analysis* is a dataframe with as many rows as there are frames. - *simulation.analysis* is a dataframe with a single row. Therefore, if one wants to look at the distribution of some property among objects for a given frame, one would export *frame.analysis[object_type][object_name]*. If one wants to analyze something over time, one would export *simulation.frame_analysis*. If one wants a single line to sumarize the simulation, for instance in order to compare different simulations, one would export *simulation.analysis*. ### Plotting When used in iPython, cytolysis can represent the system in 3D, and allows to plot objects differently according to their properties, see this [example](notebooks/display_examples.ipynb).


نیازمندی

مقدار نام
- numpy
- pandas


نحوه نصب


نصب پکیج whl cytolysis-0.0.9b0:

    pip install cytolysis-0.0.9b0.whl


نصب پکیج tar.gz cytolysis-0.0.9b0:

    pip install cytolysis-0.0.9b0.tar.gz