معرفی شرکت ها


cython-npm-0.2.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Cython project management like npm in nodejs
ویژگی مقدار
سیستم عامل -
نام فایل cython-npm-0.2.4
نام cython-npm
نسخه کتابخانه 0.2.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Minh Tuan Nguyen
ایمیل نویسنده ntuan221@gmail.com
آدرس صفحه اصلی https://github.com/minhtuan221/cython-npm
آدرس اینترنتی https://pypi.org/project/cython-npm/
مجوز MIT
cython-npm ========== Cython project management like npm in nodejs. This project is inspired by npm in nodejs. Installation ~~~~~~~~~~~~ You can easily install by: :: pip install cython-npm What problems does it solve ? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When using cython, we face the problem of compile cython file. We can do it easily by: .. code:: python import pyximport; pyximport.install() But that it is not recommended to let **pyximport** build code on end user side as it *hooks into their import system*. The best way to cater for end users is to provide pre-built binary packages. So this project compiles .pyx file and provides pre-built binary packages for easy of use. Quickstart: ~~~~~~~~~~~ Basic use to Complie file or folder .. code:: python from cython_npm.cythoncompile import export export('examplefile.pyx') export('./examplefolder') # then import them to use import examplefile from examplefolder import * You should do this code once time only. Create install file like package.json ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can also compile many files or folders at once time. Create a file name ``install.py`` in the root of your project/package and write the code below: .. code:: python from cython_npm.cythoncompile import install Manymodules = [ # put your modules list here 'examplefile.pyx', './examplefolder' ] install(Manymodules) Run the file before start your project :: python install.py Or add first line ``import install`` in startup file of your project. Use install or export in parent folder will compile all .pyx file in subdirectories. ### Using require('path') as nodejs You can also relative or fullpath import in python by ``require`` function. For example: .. code:: python from cython_npm.cythoncompile import require # import .pyx file. Will cause error if it is not compiled by export() yet. # Default value of recompile is True, only apply for .py file. To import .pyx, change recompile=False examplefile = require('../parentpackage', recompile=False) # import cython package from parent folder examplefile.somefunction() # it also support relative import .py file examplefile = require('../parentpackage') examplefile.somefunction() Using requirepyx('path'): ``requirepyx`` is simillar to ``require`` except: \* Use for cython file ('.pyx') only \* Equivalent to export('.pyx file') and require('.pyx file') Example: .. code:: python from cython_npm.cythoncompile import export export('examplefile') require('examplefile',recompile=False) # The code above is the same as: from cython_npm.cythoncompile import requirepyx requirepyx('examplefile') Using typecheck ~~~~~~~~~~~~~~~ Another utils is typecheck support to raise error in typing module (from python 3.3): .. code:: python from cython_npm.typecheck import typecheck @type_check def checkstr(s: Any)->(None, str): return None, s x,y = checkstr('tuan') print(x,y) try: checkstr(120) except Exception as error: print(error) traceback.print_exc() # That will raise an error of TypeError checkstr(200) Example: Cython vs speed test battle ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This example compare the speed between cython vs python, Swift, Go and Code differences in doing a short calculation. Cython\_npm is used in the test. This test is forked from 'marcinkliks', the original code and test is here: `Swift vs Go vs Python battle <http://www.marcinkliks.pl/2015/02/22/swift-vs-others/>`__. Note: We use Swift and Go test results as pattern and do not retest them. Go to see in test folder in github for more examples Testing condition: \* Python version: Python 3.6.3 :: Anaconda, Inc. - About computer: MacBook Pro (13-inch, 2016, Two Thunderbolt 3 ports), 2 GHz Intel Core i5, 256GB SSD | Hypothesis: | \* Is Cython really fast (compare to other language) ? \* How does Code differences affect performance ? Test process and results as shown below: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 0. Recall the speed of Swift: 0m0.416s, Go: 0m0.592s and Pypy: 0m2.633s 1. Test pure python code: .. code:: python sum = 0 for e in range(30): sum = 0 x = [] for i in range(1000000): x.append(i) y = [] for i in range(1000000 - 1): y.append(x[i] + x[i+1]) i = 0 for i in range(0, 1000000, 100): sum += y[i] print(sum) Speed test result is same/similar to original test :: time python test_python.py 9999010000 real 0m12.825s user 0m11.721s sys 0m1.061s 2. Test cython code: Create run.py with code: .. code:: python from cython_npm.cythoncompile import export export('test_cython.pyx') # will do once time import test_cython Code in **test\_cython.pyx**: .. code:: python cdef long sum = 0 cdef int i cdef int e for e in range(30): sum = 0 x = [] for i in range(1000000): x.append(i) y = [] for i in range(1000000 - 1): y.append(x[i] + x[i+1]) i = 0 for i in range(0, 1000000, 100): sum += y[i] print(sum) Speed test result: time python run.py :: time python run.py 9999010000 real 0m5.803s user 0m4.496s sys 0m1.211s 3. Test cython code with list optimization and cache: create similar run.py. Code in **test\_cythoncache.pyx**: .. code:: python from functools import lru_cache @lru_cache(maxsize=128) def dotest(): cdef long mysum = 0 cdef int i cdef int e for e in range(30): mysum = 0 x = [i for i in range(1000000)] y = [x[i] + x[i+1] for i in range(1000000-1)] i = 0 for i in range(0, 1000000, 100): mysum += y[i] print(mysum) dotest() Speed test result: :: time python run.py 9999010000 real 0m3.373s user 0m2.360s sys 0m1.001s 4. Test cython code with cache and C array: create similar run.py. Code in **test\_cythoncache.pyx**: .. code:: python from functools import lru_cache @lru_cache(maxsize=128) def dotest(): cdef long mysum = 0 cdef int i cdef int e cdef int x[1000000] cdef int y[1000000] for e in range(30): mysum = 0 for i in range(1000000): x[i] = i # y = [] for i in range(1000000 - 1): y[i] = (x[i] + x[i+1]) i = 0 for i in range(0, 1000000, 100): mysum += y[i] print(mysum) dotest() Speed test result: :: time python run.py 9999010000 real 0m0.085s user 0m0.067s sys 0m0.015s Conclusions ^^^^^^^^^^^ - With a slight change, Cython make pure python code faster by 2X time. But it is very slow compare to Swift and Go - Appling some optimal technical, Cython make python nearly 4X time faster than the original code. It may be the acceptable result. Pypy result seems very attractive too. - Using C array, Cython make the code become very fast. It consumes only 0.085s to complete as 4X time faster than Swift, 6X time faster than Go. It maybe the fastest but it is unusable in real life. - After all, i wish cython and cython\_npm could give you more usefull options in coding


نیازمندی

مقدار نام
- cython


نحوه نصب


نصب پکیج whl cython-npm-0.2.4:

    pip install cython-npm-0.2.4.whl


نصب پکیج tar.gz cython-npm-0.2.4:

    pip install cython-npm-0.2.4.tar.gz