معرفی شرکت ها


cycle-analysis-0.0.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

cycle_analysis module, performing minimal cycle basis calculation and the cycle coalescecne algorithm.
ویژگی مقدار
سیستم عامل -
نام فایل cycle-analysis-0.0.5
نام cycle-analysis
نسخه کتابخانه 0.0.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده felixk1990
ایمیل نویسنده felixuwekramer@protonmail.com
آدرس صفحه اصلی https://github.com/felixk1990/cycle-coalescence-algorithm
آدرس اینترنتی https://pypi.org/project/cycle-analysis/
مجوز -
# cycle-coalescence-algorithm Have you ever wondered how cycles in graphs form a vector space and encapsulate nesting information? Here is a tool ready to use, enabling you to calculate the cycle bases, mapping them onto a merging tree, and analyze this tree's asymmetry. ## Introduction This python module allows users to analyze weighted, undirected simple graphs for their nested cycle structure by performing two major functions: Calculating minimal cycle bases (Horton algorithm) and computing the merging tree (cycle coalescence algorithm). The algorithm is described in "Modes et al,'Extracting Hidden Hierarchies in 3D Distribution Networks', 2016" and basically follows the shown scheme below: - All fundamentals minimal cyles (minimal number of edges) are listed in the weighted graph G and mapped onto the leaves of a new tree T. - Then one identifies the lightest edge e in G and merges the two smallest cycles along this edge, creating a new vertex in the tree T for the merger cycle - remove the original two cycles and proceed with the next lightest edge e until all cycles in G are merged - finally calculate the tree asymmetry using the techniques of "Van-Pelt et al, 'Tree Asymmetry—A Sensitive and Practical Measure for Binary Topological Trees' ,1992" - the asymmetry orderparameter will be be 1 for perfecly asymmetric trees and 0 for perfectly symmetric trees ![modes](https://github.com/felixk1990/cycle-coalescence-algorithm/blob/main/gallery/modes_merging_algorithm_2016.png) Figure taken from: Modes et al,'Extracting Hidden Hierarchies in 3D Distribution Networks', 2016 ## Installation pip install cycle_analysis ## Usage Currently this implementation only supports networkx graphs. Call cycle_analysis.cycle_coalescence for graph analysis, while cycle_analysis.test provides you with pre-customized functions to put specific weight patterns onto the graph: random/gradient/nested_square ```python import networkx as nx import cycle_analysis.cycle_coalescence as cc import cycle_analysis.cycle_custom_pattern as ccp # generate a dummy graph for testing # put an edge weight distribution on the system, available are random/gradient/nested_square G=nx.grid_graph((7,7,1)) G=ccp.generate_pattern(G,'nested_square') # merge all shortest cycles and calc the merging tree's asymmetry for each branch asymmetry=cc.calc_cycle_asymmetry(G) print(asymmetry) ``` ./notebook contains examples to play with in the form of jupyter notebooks ## Requirements ``` python3.6+ ```,``` networkx ```, ``` numpy ``` ## Gallery random weight distribution\ ![random](https://github.com/felixk1990/cycle-coalescence-algorithm/blob/main/gallery/random.png) nested square weight distribution\ ![nested](https://github.com/felixk1990/cycle-coalescence-algorithm/blob/main/gallery/nested_square.png) gradient weight distribution\ ![gradient](https://github.com/felixk1990/cycle-coalescence-algorithm/blob/main/gallery/gradient.png) ## Acknowledgement ```cycle_analysis``` written by Felix Kramer This implementation is based on the cycle coalescence algorithm as described by [Modes et al, 2016](https://journals.aps.org/prx/pdf/10.1103/PhysRevX.6.031009). Please acknowledge if used for any further publication or projects.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl cycle-analysis-0.0.5:

    pip install cycle-analysis-0.0.5.whl


نصب پکیج tar.gz cycle-analysis-0.0.5:

    pip install cycle-analysis-0.0.5.tar.gz