معرفی شرکت ها


cvxpylayers-0.1.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Differentiable convex optimization layers
ویژگی مقدار
سیستم عامل -
نام فایل cvxpylayers-0.1.6
نام cvxpylayers
نسخه کتابخانه 0.1.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/cvxgrp/cvxpylayers
آدرس اینترنتی https://pypi.org/project/cvxpylayers/
مجوز Apache License, Version 2.0
![cvxpylayers logo](cvxpylayers_logo.png) [![Build Status](https://travis-ci.org/cvxgrp/cvxpylayers.svg?branch=master)](https://travis-ci.org/cvxgrp/cvxpylayers) [![Build Status](https://ci.appveyor.com/api/projects/status/dhtbi9fb96mce56i/branch/master?svg=true)](https://ci.appveyor.com/project/sbarratt/cvxpylayers/branch/master) # cvxpylayers cvxpylayers is a Python library for constructing differentiable convex optimization layers in PyTorch, JAX, and TensorFlow using CVXPY. A convex optimization layer solves a parametrized convex optimization problem in the forward pass to produce a solution. It computes the derivative of the solution with respect to the parameters in the backward pass. This library accompanies our [NeurIPS 2019 paper](https://web.stanford.edu/~boyd/papers/pdf/diff_cvxpy.pdf) on differentiable convex optimization layers. For an informal introduction to convex optimization layers, see our [blog post](https://locuslab.github.io/2019-10-28-cvxpylayers/). Our package uses [CVXPY](https://github.com/cvxgrp/cvxpy) for specifying parametrized convex optimization problems. - [Installation](#installation) - [Usage](#usage) - [Examples](#examples) - [Contributing](#contributing) - [Projects using cvxpylayers](#projects-using-cvxpylayers) - [License](#contributing) - [Citing](#citing) ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install cvxpylayers. ```bash pip install cvxpylayers ``` Our package includes convex optimization layers for PyTorch, JAX, and TensorFlow 2.0; the layers are functionally equivalent. You will need to install [PyTorch](https://pytorch.org), [JAX](https://github.com/google/jax), or [TensorFlow](https://www.tensorflow.org) separately, which can be done by following the instructions on their websites. cvxpylayers has the following dependencies: * Python 3 * [NumPy](https://pypi.org/project/numpy/) * [CVXPY](https://github.com/cvxgrp/cvxpy) >= 1.1.a4 * [PyTorch](https://pytorch.org) >= 1.0, [JAX](https://github.com/google/jax) >= 0.2.12, or [TensorFlow](https://tensorflow.org) >= 2.0 * [diffcp](https://github.com/cvxgrp/diffcp) >= 1.0.13 ## Usage Below are usage examples of our PyTorch, JAX, and TensorFlow layers. Note that the parametrized convex optimization problems must be constructed in CVXPY, using [DPP](https://www.cvxpy.org/tutorial/advanced/index.html#disciplined-parametrized-programming). ### PyTorch ```python import cvxpy as cp import torch from cvxpylayers.torch import CvxpyLayer n, m = 2, 3 x = cp.Variable(n) A = cp.Parameter((m, n)) b = cp.Parameter(m) constraints = [x >= 0] objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1)) problem = cp.Problem(objective, constraints) assert problem.is_dpp() cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x]) A_tch = torch.randn(m, n, requires_grad=True) b_tch = torch.randn(m, requires_grad=True) # solve the problem solution, = cvxpylayer(A_tch, b_tch) # compute the gradient of the sum of the solution with respect to A, b solution.sum().backward() ``` Note: `CvxpyLayer` cannot be traced with `torch.jit`. ### JAX ```python import cvxpy as cp import jax from cvxpylayers.jax import CvxpyLayer n, m = 2, 3 x = cp.Variable(n) A = cp.Parameter((m, n)) b = cp.Parameter(m) constraints = [x >= 0] objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1)) problem = cp.Problem(objective, constraints) assert problem.is_dpp() cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x]) key = jax.random.PRNGKey(0) key, k1, k2 = jax.random.split(key, 3) A_jax = jax.random.normal(k1, shape=(m, n)) b_jax = jax.random.normal(k2, shape=(m,)) solution, = cvxpylayer(A_jax, b_jax) # compute the gradient of the summed solution with respect to A, b dcvxpylayer = jax.grad(lambda A, b: sum(cvxpylayer(A, b)[0]), argnums=[0, 1]) gradA, gradb = dcvxpylayer(A_jax, b_jax) ``` Note: `CvxpyLayer` cannot be traced with the JAX `jit` or `vmap` operations. ### TensorFlow 2 ```python import cvxpy as cp import tensorflow as tf from cvxpylayers.tensorflow import CvxpyLayer n, m = 2, 3 x = cp.Variable(n) A = cp.Parameter((m, n)) b = cp.Parameter(m) constraints = [x >= 0] objective = cp.Minimize(0.5 * cp.pnorm(A @ x - b, p=1)) problem = cp.Problem(objective, constraints) assert problem.is_dpp() cvxpylayer = CvxpyLayer(problem, parameters=[A, b], variables=[x]) A_tf = tf.Variable(tf.random.normal((m, n))) b_tf = tf.Variable(tf.random.normal((m,))) with tf.GradientTape() as tape: # solve the problem, setting the values of A, b to A_tf, b_tf solution, = cvxpylayer(A_tf, b_tf) summed_solution = tf.math.reduce_sum(solution) # compute the gradient of the summed solution with respect to A, b gradA, gradb = tape.gradient(summed_solution, [A_tf, b_tf]) ``` Note: `CvxpyLayer` cannot be traced with `tf.function`. ### Log-log convex programs Starting with version 0.1.3, cvxpylayers can also differentiate through log-log convex programs (LLCPs), which generalize geometric programs. Use the keyword argument `gp=True` when constructing a `CvxpyLayer` for an LLCP. Below is a simple usage example ```python import cvxpy as cp import torch from cvxpylayers.torch import CvxpyLayer x = cp.Variable(pos=True) y = cp.Variable(pos=True) z = cp.Variable(pos=True) a = cp.Parameter(pos=True, value=2.) b = cp.Parameter(pos=True, value=1.) c = cp.Parameter(value=0.5) objective_fn = 1/(x*y*z) objective = cp.Minimize(objective_fn) constraints = [a*(x*y + x*z + y*z) <= b, x >= y**c] problem = cp.Problem(objective, constraints) assert problem.is_dgp(dpp=True) layer = CvxpyLayer(problem, parameters=[a, b, c], variables=[x, y, z], gp=True) a_tch = torch.tensor(a.value, requires_grad=True) b_tch = torch.tensor(b.value, requires_grad=True) c_tch = torch.tensor(c.value, requires_grad=True) x_star, y_star, z_star = layer(a_tch, b_tch, c_tch) sum_of_solution = x_star + y_star + z_star sum_of_solution.backward() ``` ## Solvers At this time, we support two open-source solvers: [SCS](https://github.com/cvxgrp/scs) and [ECOS](https://github.com/embotech/ecos). SCS can be used to solve any problem expressible in CVXPY; ECOS can be used to solve problems that don't use the positive semidefinite or exponential cone (this roughly means that if you have positive semidefinite matrices or use atoms like `cp.log`, ECOS cannot be used to solve your problem via `cvxpylayers`). By default, `cvxpylayers` uses SCS to solve the problem. ### Using ECOS First make sure that you have `cvxpylayers` and `diffcp` up to date, by running ``` pip install --upgrade cvxpylayers diffcp ``` Then, to use ECOS, you would pass the `solver_args` argument to the layer: ``` solution = layer(*params, solver_args={"solve_method": "ECOS"}) ``` ### Passing arguments to the solvers One can pass arguments to both SCS and ECOS by adding the argument as a key-value pair in the `solver_args` argument. For example, to increase the tolerance of SCS to `1e-8` one would write: ``` layer(*parameters, solver_args={"eps": 1e-8}) ``` If SCS is not converging, we highly recommend switching to ECOS (if possible), and if not, using the following arguments to `SCS`: ``` solver_args={"eps": 1e-8, "max_iters": 10000, "acceleration_lookback": 0} ``` ## Examples Our [examples](examples) subdirectory contains simple applications of convex optimization layers in IPython notebooks. ## Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate. Please lint the code with `flake8`. ```bash pip install flake8 # if not already installed flake8 ``` ### Running tests cvxpylayers uses the `pytest` framework for running tests. To install `pytest`, run: ```bash pip install pytest ``` Execute the tests from the main directory of this repository with: ```bash pytest cvxpylayers/{torch,jax,tensorflow} ``` ## Projects using cvxpylayers Below is a list of projects using cvxpylayers. If you have used cvxpylayers in a project, you're welcome to make a PR to add it to this list. * [Learning Convex Optimization Control Policies](https://web.stanford.edu/~boyd/papers/learning_cocps.html) * [Learning Convex Optimization Models](https://web.stanford.edu/~boyd/papers/learning_copt_models.html) ## License cvxpylayers carries an Apache 2.0 license. ## Citing If you use cvxpylayers for research, please cite our accompanying [NeurIPS paper](https://web.stanford.edu/~boyd/papers/pdf/diff_cvxpy.pdf): ``` @inproceedings{cvxpylayers2019, author={Agrawal, A. and Amos, B. and Barratt, S. and Boyd, S. and Diamond, S. and Kolter, Z.}, title={Differentiable Convex Optimization Layers}, booktitle={Advances in Neural Information Processing Systems}, year={2019}, } ``` If you use cvxpylayers to differentiate through a log-log convex program, please cite the accompanying [paper](https://web.stanford.edu/~boyd/papers/diff_dgp.html): ``` @article{agrawal2020differentiating, title={Differentiating through log-log convex programs}, author={Agrawal, Akshay and Boyd, Stephen}, journal={arXiv}, archivePrefix={arXiv}, eprint={2004.12553}, primaryClass={math.OC}, year={2020}, } ```


نیازمندی

مقدار نام
>=1.15 numpy
>=1.1.0 scipy
>=1.0.13 diffcp
>=1.1.0a4 cvxpy


نحوه نصب


نصب پکیج whl cvxpylayers-0.1.6:

    pip install cvxpylayers-0.1.6.whl


نصب پکیج tar.gz cvxpylayers-0.1.6:

    pip install cvxpylayers-0.1.6.tar.gz