معرفی شرکت ها


cvxportfolio-0.2.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

...
ویژگی مقدار
سیستم عامل -
نام فایل cvxportfolio-0.2.0
نام cvxportfolio
نسخه کتابخانه 0.2.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Cvxportfolio's Contributors
ایمیل نویسنده -
آدرس صفحه اصلی https://cvxportfolio.readthedocs.io
آدرس اینترنتی https://pypi.org/project/cvxportfolio/
مجوز -
# Cvxportfolio [![CVXportfolio on PyPI](https://img.shields.io/pypi/v/cvxportfolio.svg)](https://pypi.org/project/cvxportfolio/) [![Downloads](https://static.pepy.tech/personalized-badge/cvxportfolio?period=month&units=international_system&left_color=black&right_color=orange&left_text=PyPI%20downloads%20per%20month)](https://pepy.tech/project/cvxportfolio) [![Documentation Status](https://readthedocs.org/projects/cvxportfolio/badge/?version=latest)](https://cvxportfolio.readthedocs.io/en/latest/?badge=latest) **WORK IN PROGRESS. Cvxportfolio is currently under development. We will freeze the user interface by end of 2023Q2 and release the first stable version by end of 2023Q3. The script `hello_world.py` now runs with the new interface (see below).** `cvxportfolio` is a python library for portfolio optimization and simulation based on the book [Multi-Period Trading via Convex Optimization](https://web.stanford.edu/~boyd/papers/pdf/cvx_portfolio.pdf). It is written in Python, its main dependencies are [`cvxpy`](https://github.com/cvxgrp/cvxpy) and [`pandas`](https://github.com/pandas-dev/pandas). The documentation of the package is at [cvxportfolio.readthedocs.io](https://cvxportfolio.readthedocs.io/en/latest/). Installation ------------ ``` pip install cvxportfolio ``` Testing ------------ To test it locally, for example, you can set up the development environment with [`poetry`](https://python-poetry.org/) and run [`pytest`](https://pytest.org/). ``` git clone https://github.com/cvxgrp/cvxportfolio.git cd cvxportfolio poetry install poetry run pytest --cov ``` Example ------------ To get a sneak preview of `cvxportfolio` you may try the following code. This is available in `examples/hello_world.py` and runs with `cvxportfolio` >= 0.2.0 ```python import cvxportfolio as cp import matplotlib.pyplot as plt # define a portfolio optimization policy # with rolling window mean (~10 yrs) returns # with forecast error risk on returns (see the book) # rolling window mean (~10 yrs) covariance # and forecast error risk on covariance (see the book) policy = cp.SinglePeriodOptimization(objective = cp.RollingWindowReturnsForecast(2500) - cp.RollingWindowReturnsForecastErrorRisk(2500) - 5 * cp.RollingWindowFullCovariance(2500, forecast_error_kappa = 0.25), constraints = [cp.LeverageLimit(3)] ) # define a market simulator, which downloads stock market data and stores it locally # in ~/cvxportfolio/ simulator = cp.MarketSimulator(["AMZN", "AAPL", "MSFT", "GOOGL", "TSLA", "GM"]) # perform a backtest (by default it starts with 1E6 USD cash) backtest = cp.BackTest(policy, simulator, '2023-01-01', '2023-04-21') # plot value of the portfolio in time backtest.v.plot(figsize=(12, 5), label='Single Period Optimization') plt.ylabel('USD') plt.title('Total value of the portfolio in time') plt.show() # plot weights of the (non-cash) assets for the SPO policy backtest.w.iloc[:, :-1].plot() plt.title('Weights of the portfolio in time') plt.show() print('total tcost', backtest.tcost.sum()) print('total borrow cost', backtest.hcost_stocks.sum()) print('total cash return + cost', backtest.hcost_cash.sum()) ``` (*The other examples may currently have problems as we are changing various bits and pieces of `cvxportfolio`.*) Academic ------------ If you use `cvxportfolio` in your academic work please cite our book: ``` @article{BBDKKNS:17, author = {S. Boyd and E. Busseti and S. Diamond and R. Kahn and K. Koh and P. Nystrup and J. Speth}, title = {Multi-Period Trading via Convex Optimization}, journal = {Foundations and Trends in Optimization}, year = {2017}, month = {August}, volume = {3}, number = {1}, pages = {1--76}, publisher = {Now Publishers}, url = {http://stanford.edu/~boyd/papers/cvx_portfolio.html}, } ``` License ------------ Cvxportfolio is licensed under the [Apache 2.0](http://www.apache.org/licenses/) permissive open source license.


نیازمندی

مقدار نام
- cvxpy
- multiprocess
- numpy
- pandas
- pandas_datareader
- yfinance


زبان مورد نیاز

مقدار نام
>=3.9.0 Python


نحوه نصب


نصب پکیج whl cvxportfolio-0.2.0:

    pip install cvxportfolio-0.2.0.whl


نصب پکیج tar.gz cvxportfolio-0.2.0:

    pip install cvxportfolio-0.2.0.tar.gz