معرفی شرکت ها


cvu-python-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Computer Vision deployment tools for dummies and experts.
ویژگی مقدار
سیستم عامل -
نام فایل cvu-python-0.0.2
نام cvu-python
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده BlueMirrors
ایمیل نویسنده contact.bluemirrors@gmail.com
آدرس صفحه اصلی https://github.com/BlueMirrors/cvu
آدرس اینترنتی https://pypi.org/project/cvu-python/
مجوز Apache Software License v2.0
# CVU: Computer Vision Utils <img src="https://raw.githubusercontent.com/BlueMirrors/cvu/master/static/logo.png" width="30"> [![CodeFactor](https://www.codefactor.io/repository/github/bluemirrors/cvu/badge?s=700eb6a402321377322a7f4c15ebf99055e0c299)](https://www.codefactor.io/repository/github/bluemirrors/cvu) [![stability-alpha](https://img.shields.io/badge/stability-alpha-f4d03f.svg)](https://github.com/mkenney/software-guides/blob/master/STABILITY-BADGES.md#alpha) [![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/) [![Downloads](https://pepy.tech/badge/cvu-python)](https://pepy.tech/project/cvu-python) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1FvebFw40Bm0bUHWCgS0-iuYp8AKLIfSh?usp=sharing) <br> Computer Vision pipeline framework with SOTA components for dummies and experts.<br><br> Whether you are developing an end-to-end computer vision pipeline or just looking to use some quick computer vision in your project, CVU <img src="https://raw.githubusercontent.com/BlueMirrors/cvu/master/static/logo.png" width="12"> can help! Designed to be used by both the expert and the novice, CVU <img src="https://raw.githubusercontent.com/BlueMirrors/cvu/master/static/logo.png" width="12"> aims at making CV pipelines easier to build and consistent around platforms, devices and models.<br><br> Code Example <a href="https://youtu.be/MFXC8xVt2fg" target="_blank"><img src="https://img.shields.io/badge/YouTube-FF0000?style=for-the-badge&logo=youtube&logoColor=white" height="15"></a> ```bash pip install cvu-python ``` <br><br> CVU <img src="https://raw.githubusercontent.com/BlueMirrors/cvu/master/static/logo.png" width="12"> lets you create end-to-end pipelines with various SOTA/customizable components. With a focus on a common component interface, you naturally create a loosely coupled pipeline with most of the implementation details hidden. Because of this, you can combine any number of CVU <img src="https://raw.githubusercontent.com/BlueMirrors/cvu/master/static/logo.png" width="12"> components, in any order, to create a pipeline of your need. You can set and switch between one or multiple pipeline input sources (eg. an image, folder, video, or live stream) and output sinks (eg. video file, image with results drawn, TXT/JSON dumps, etc.) It also comes with optional + customizable default settings which can run a benchmark on your platform/machine to optimally choose dependencies based on accuracy and latency preferences. CVU <img src="https://raw.githubusercontent.com/BlueMirrors/cvu/master/static/logo.png" width="12"> can also automatically switch/select target devices (CPU, GPU, TPU), computation backends (TF, PyTorch, ONNX, TensorRT, TFLite), and models (small, big, etc.) based on where the pipeline is running. Currently, CVU <img src="https://raw.githubusercontent.com/BlueMirrors/cvu/master/static/logo.png" width="12"> only provides Object Detection, but we are in the process to support Segmentation, Background removal, Tracking, and Image text matching out of the box. # Index 📋 - [Getting Started](#cvu--says-hi) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1FvebFw40Bm0bUHWCgS0-iuYp8AKLIfSh?usp=sharing) - [Why CVU?](https://github.com/BlueMirrors/cvu/wiki) - [Object Detection (YOLOv5)](https://github.com/BlueMirrors/cvu/wiki/YOLOv5-object-detection) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1FvebFw40Bm0bUHWCgS0-iuYp8AKLIfSh?usp=sharing) - [TensorRT](https://github.com/BlueMirrors/cvu/wiki/YOLOv5-TensorRT) - [Torch](https://github.com/BlueMirrors/cvu/wiki/YOLOv5-Torch) - [ONNX](https://github.com/BlueMirrors/cvu/wiki/YOLOv5-ONNX) - [TensorFlow](https://github.com/BlueMirrors/cvu/wiki/YOLOv5-TensorFlow) - [TFLite](https://github.com/BlueMirrors/cvu/wiki/YOLOv5-TFLite) - [Devices (CPU, GPU, TPU)](#devices) - [Benchmark-Tool (YOLOv5)](https://github.com/BlueMirrors/cvu/wiki/Benchmark-tool) - [Benchmarks Results (YOLOv5)](https://github.com/BlueMirrors/cvu/wiki/YOLOv5-benchmarking) - [Precission Accuracy (YOLOv5)](https://github.com/BlueMirrors/cvu/wiki/YOLOv5-object-detection#precission-accuracy-yolov5) - [Examples](https://github.com/BlueMirrors/cvu/tree/master/examples) - [References](#references) <br> # CVU <img src="https://raw.githubusercontent.com/BlueMirrors/cvu/master/static/logo.png" width="25"> Says Hi! [Index](#index-) How many installation-steps and lines of code will you need to run object detection on a video with a TensorRT backend? How complicated is it be to test that pipeline in Colab?<br><br> With CVU <img src="https://raw.githubusercontent.com/BlueMirrors/cvu/master/static/logo.png" width="12">, you just need the following! No extra installation steps needed to run on Colab, just pip install our tool, and you're all set to go!<br> ```python from vidsz.opencv import Reader, Writer from cvu.detector import Detector # set video reader and writer, you can also use normal OpenCV reader = Reader("example.mp4") writer = Writer(reader, name="output.mp4") # create detector with tensorrt backend having fp16 precision by default detector = Detector(classes="coco", backend="tensorrt") # process frames for frame in reader: # make predictions. preds = detector(frame) # draw it on frame preds.draw(frame) # write it to output writer.write(frame) writer.release() reader.release() ``` <br> Want to use less lines of code? How about this! <br> ```python from cvu.detector import Detector from vidsz.opencv import Reader, Writer detector = Detector(classes="coco", backend="tensorrt") with Reader("example.mp4") as reader: with Writer(reader, name="output.mp4") as writer: writer.write_all(map(lambda frame:detector(frame).draw(frame), reader)) ``` <br> Want to switch to non-cuda device? Just set `device="cpu"`, and backend to `"onnx"`, `"tflite"`, `"torch"` or `"tensorflow"`. <br> ```python detector = Detector(classes="coco", backend="onnx", device="cpu") ``` <br> Want to use TPU? Just set `device="tpu"` and choose a supported backend (only `"tensorflow"` supported as of the latest release) <br> ```python detector = Detector(classes="coco", backend="tensorflow", device="tpu") ``` You can change devices, platforms and backends as much as you want, without having to change your pipeline. <br> # Devices [Index](#index-) ### Support Info Following is latest support matrix | Device | TensorFlow | Torch | TFLite | ONNX | TensorRT | | ------ | ---------- | ----- | ------ | ---- | -------- | | GPU | ✅ | ✅ | ❌ | ✅ | ✅ | | CPU | ✅ | ✅ | ✅ | ✅ | ❌ | | TPU | ✅ | ❌ | ❌ | ❌ | ❌ | <br> ### Recommended Backends (in order) Based on FPS performance and various benchmarks - GPU: `TensorRT` > `Torch` > `ONNX` > `TensorFlow` - CPU: `ONNX` > `TFLite` > `TensorFlow` > `Torch` - TPU: `TensorFlow` <br><br> # References - **_Logo-Attribution_** <a href="http://www.freepik.com">Designed by roserodionova / Freepik</a> - [Yolov5 (Default Object Detection Model)](https://github.com/ultralytics/yolov5)


نیازمندی

مقدار نام
- opencv-python
- vidsz
- numpy
- gdown


نحوه نصب


نصب پکیج whl cvu-python-0.0.2:

    pip install cvu-python-0.0.2.whl


نصب پکیج tar.gz cvu-python-0.0.2:

    pip install cvu-python-0.0.2.tar.gz